Ngspice Users Manual
ngspice-28
(ngspice release version)

Holger Vogt, Marcel Hendrix, Paolo Nenzi

May 27, 2018

Locations

The project and download pages of ngspice may be found at

Ngspice home page http://ngspice.sourceforge.net/

Project page at sourceforge http://sourceforge.net/projects/ngspice/
Download page at sourceforge http://sourceforge.net/projects/ngspice/files/

Git source download http://sourceforge.net/scm/?type=cvs&group_id=38962

Status

This manual is a work in progress. Some to-dos are listed in Chapt. 24.3. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad English
style etc.

How to use this manual

The manual is a ‘work in progress’. It may accompany a specific ngspice release, e.g. ngspice-
24 as manual version 24. If its name contains ‘Version xxplus’, it describes the actual code
status, found at the date of issue in the Git Source Code Management (SCM) tool. The manual is
intended to provide a complete description of the ngspice functionality, its features, commands,
or procedures. It is not a book about learning SPICE usage, but the novice user may find some
hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and
simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or
the actual Git source code, which you may find on the ngspice web pages. If you are running a
specific Linux distribution, you may check if it provides ngspice as part of the package. Some
are listed here.

License

This document is covered by the Creative Commons Attribution Share-Alike (CC-BY-SA)
v4.0..

Part of chapters 12 and 25-27 are in the public domain.
Chapter 30 is covered by New BSD (chapt. 33.3.2).

http://ngspice.sourceforge.net/
http://sourceforge.net/projects/ngspice/
http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=cvs&group_id=38962
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Part I

Ngspice User Manual

Contents

I Ngspice User Manual

1 Introduction

1.1

1.2

1.3
1.4

Simulation Algorithms

1.1.1 Analog Simulation
1.1.2 Digital Simulation
1.1.3 Mixed-Signal Simulation
1.1.4 Mixed-Level Simulation
Supported Analyses
1.2.1 DC Analysis
1.2.2 AC Small-Signal Analysis
1.2.3 Transient Analysis
1.2.4 Pole-Zero Analysis
1.2.5 Small-Signal Distortion Analysis

1.2.6 Sensitivity Analysis
1.2.7 Noise Analysis
1.2.8 Periodic Steady State Analysis . .

Analysis at Different Temperatures

Convergence
1.4.1 Voltage convergence criterion . .
1.4.2 Current convergence criterion . .
1.4.3 Convergence failure

2 Circuit Description

2.1

General Structure and Conventions

2.1.1
2.1.2
2.1.3

Input file structure

Circuit elements (device instances)

Some naming conventions

33
34
34
35
35
36
37
37
38
38
38
39
39
39
40
40
41
42
42
43

CONTENTS

22 Basiclines 48
221 TITLEline ittt 48
222 ENDLine 48
223 Comments e e e e 49
2.2.4 End-of-linecomments 49
2.3 .MODEL Device Models 49
24 SUBCKT Subcircuits oo 50
24.1 SUBCKTLine e e 51
242 ENDSLine. e 52
243 SubcircuitCalls L 52
2.5 .GLOBAL e 52
2.6 INCLUDE 53
277 LIB .o 53
2.8 .PARAM Parametricnetlists 0oL 53
2.8.1 paramline 54
2.8.2 Brace expressions in circuit elements: 0oL 54
2.8.3 Subcircuit parameters e e e e e e 55
2.84 Symbolscope e 56
2.8.5 Syntax of expressionso 56
2.8.6 Reservedwords 59
2.8.7 A word of caution on the three ngspice expression parsers 59
29 FUNC. e 59
2.10 .CSPARAM e 60
2.11 . TEMP e 60
2.12 .IF Condition-Controlled Netlist 61
2.13 Parameters, functions, expressions, and command scripts 62
2.13.1 Parameters e e 62
2.13.2 Nonlinear sources« o v v v v vt e 62
2.13.3 Control commands, Command scripts 62
Circuit Elements and Models 65
3.1 General options and information 65
3.1.1 Paralleling devices with multiplierm 65
3.1.2 Instance and model parameters 67

3.1.3 Modelbinning 67

CONTENTS 7
3.1.4 Initial conditions Lo 67

3.2 Elementary Devices L 68
321 ResiStors e e 68

3.2.2 Semiconductor Resistors Lo 70

3.2.3 Semiconductor Resistor Model (R) 70

3.2.4 Resistors, dependent on expressions (behavioral resistor) 72

325 Capacitors e e e 72

3.2.6 Semiconductor Capacitors 73

3.2.7 Semiconductor Capacitor Model (C) 74

3.2.8 Capacitors, dependent on expressions (behavioral capacitor) 75

329 Inductors 76
3.2.10 Inductormodel 77
3.2.11 Coupled (Mutual) Inductors 78
3.2.12 Inductors, dependent on expressions (behavioral inductor) 78
3.2.13 Capacitor or inductor with initial conditions 79
3.2.14 Switches L 80
3.2.15 SwitchModel (SW/CSW) 81

4 Voltage and Current Sources 83
4.1 Independent Sources for Voltage or Current 83
4.1.1 Pulse 84

412 Sinusoidal 85

4.1.3 Exponential 85

4.14 Piece-WiseLinear 86

4.1.5 Single-Frequency FM oL 86

4.1.6 Amplitude modulated source (AM) 87

4.1.7 Transient nOISe SOUICE « .« v v v v v v bt et et e 88

4.1.8 Random voltagesource 89

4.1.9 External voltage or currentinput 89
4.1.10 Arbitrary Phase Sources 90

4.2 Linear Dependent Sources e 90
4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS) 90

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS) 91

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS) 91

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS) 91

4.2.5 Polynomial Source Compatibility 92

5 Non-linear Dependent Sources (Behavioral Sources)

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntaxandusage

5.1.2 Special B-Source Variables time, temper, hertz

5.1.3 vparCexpression’)
5.1.4 Piecewise Linear Function: pwl
5.2 Exxxx: non-linear voltage source
52,1 VOL e
522 VALUE
523 TABLE
524 POLY
525 LAPLACE
5.3 Gxxxx: non-linear current source
53.1 CUR e
532 VALUE
533 TABLE
534 POLY
535 LAPLACE
536 Example
5.4 Debugging a behavioral source

6 Transmission Lines

6.1 Lossless Transmission Lines
6.2 Lossy Transmission Lines
6.2.1 Lossy Transmission Line Model (LTRA)
6.3 Uniform Distributed RCLines
6.3.1 Uniform Distributed RC Model (URC)
6.4 KSPICE Lossy Transmission Lines
6.4.1 Single Lossy Transmission Line (TXL)
6.4.2 Coupled Multiconductor Line (CPL)
7 Diodes
7.1 JunctionDiodes oo
7.2 DiodeModel (D),

7.3 Diode Equations.

CONTENTS

CONTENTS

8

9

10

11

BJTs
8.1 Bipolar Junction Transistors (BJTs)
8.2 BJT Models (NPN/PNP) e

JFETs

9.1 Junction Field-Effect Transistors JFETs)

9.2 JFET Models (NJE/PJF) e
9.2.1 JFET level 1 model with Parker Skellern modification
9.2.2 JFET level 2 Parker Skellernmodel

MESFETSs

10.1 MESFETS o e

10.2 MESFET Models (NME/PMF)
10.2.1 Model by Statze.a.
10.2.2 Model by Ytterdale.a.,
10.2.3 hfetl
10.2.4 hfet2 e

MOSFETSs

11.1 MOSFET devices o i i it it e e e e e e

11.2 MOSFET models (NMOS/PMOS) oo
11.2.1 MOSLevel 1
11.22 MOSLevel 2 o
11.23 MOSLevel3
1124 MOSLevel6
11.2.5 NotesonLevel I-6models
11.2.6 MOSLevel9 e
11.2.77 BSIMModels
11.2.8 BSIMI model (level4)
11.2.9 BSIM2 model (level5)
11.2.10 BSIM3 model (levels 8,49)
11.2.11 BSIM4 model (levels 14,54)
11.2.12EKVmodel
11.2.13 BSIMSOI models (levels 10, 58, 55,56,57)
11.2.14 SOI3 model (Ievel 60)
11.2.15 HiSIM models of the University of Hiroshima

11.3 Power MOSFET model (VDMOS)

123
123
123

129
129
129
129
131

133
133
133
133
134
134
134

10 CONTENTS

12 Mixed-Mode and Behavioral Modeling with XSPICE 149
12.1 Code Model Element & MODEL Cards 149
12.1.1 Syntax 149
12.1.2 Examples o e e e e 153
12.1.3 Search path for fileinput oL 154
12.2 AnalogModels 154
1221 Gain.o e e 154
1222 Summer oL e e e 155
12.2.3 Multiplier e 156
1224 Divider e 157
12.2.5 Limiter o .o e e e 159
12.2.6 Controlled Limiter 160
12.2.7 PWL Controlled Source 162
12.2.8 Filesource L 164
12.2.9 multi_input_pwlblock L. 166
12.2.10 Analog Switch L 167
12.2.11Zener Diode 168
12212 Current Limiter L 169
12.2.13 Hysteresis Block 172
12.2.14 Differentiator 174
12.2.15Integrator e 175
12.2.16 S-Domain Transfer Function 176
122.17SlewRate Block oo 179
12.2.18 Inductive Coupling L 180
122,19 Magnetic Core oo e e e e e 181
12.2.20 Controlled Sine Wave Oscillator 185
12.2.21 Controlled Triangle Wave Oscillator 186
12.2.22 Controlled Square Wave Oscillator 187
12.2.23 Controlled One-Shot 189
12.2.24 Capacitance Meter L o 191
12.225Inductance Meter 192
12226 MemriStor L oL e e e e e e e 192
12.2.272Dtablemodel 193
12.2.283D tablemodel 195

12.3 Hybrid Models o 197

CONTENTS 11

12.3.1 Digital-to-Analog Node Bridge 198
12.3.2 Analog-to-Digital Node Bridge 199
12.3.3 Controlled Digital Oscillator 200
12.3.4 Node bridge from digital to real withenable 201
12.3.5 A Z**-1 block workingonrealdata 202
12.3.6 A gain block for event-drivenrealdata. 203
12.3.7 Node bridge from real to analog voltage 203
12.4 Digital Models e 204
124.1 Buffer 204
1242 Inverter L 205
1243 And 206
12.4.4 Nand e 207
1245 Or . o oo e 208
124.6 Nor e 209
1247 Xor 210
1248 Xnor 211
12.4.9 Tristate o e e e 212
12410Pullup oo e 214
12411 Pulldown 0 e 214
12412DFlipFlop 215
12413JKFlipFlop 217
12414 Toggle FlipFlop 219
12.4.158Set-ResetFlipFlop 221
124.16DLatch 224
12.4.17 Set-Reset Latch oo 226
12.4.18 State Machine L o 228
12.4.19 Frequency Divider 231
12420RAM e 233
12.4.21 Digital Source e 235
12422LUT . . o oL 237
12.423 General LUT 238
12.5 Predefined Node Types for event driven simulation 240
12.5.1 Digital Node Type 240
125.2 RealNode Type o i 240
1253 IntNode Type i i e 240

12.5.4 (Digital) Input/Output 240

12

13 Verilog A Device models

13.1 Introduction e
132 ADMS . . . e
13.3 How to integrate a Verilog-A model into ngspice
13.3.1 How to setup a *.va model for ngspice
13.3.2 Adding admsXml to your build environment
13.3.3 Compile ngspice with ADMS

14 Mixed-Level Simulation (ngspice with TCAD)

14.1 Cider e
14.2 GSS, Genius

15 Analyses and Output Control (batch mode)

15.1 Simulator Variables (.options)
15.1.1 General Options
15.1.2 DC SolutionOptions
15.1.3 AC SolutionOptions
15.1.4 Transient AnalysisOptions
15.1.5 ELEMENT Specificoptions
15.1.6 Transmission Lines Specific Options
15.1.7 Precedence of option and .options commands

15.2 Initial Conditions e

15.2.1 .NODESET: Specify Initial Node Voltage Guesses

15.2.2 IC: Set Initial Conditions
153 Analyses.
15.3.1 .AC: Small-Signal AC Analysis
15.3.2 .DC: DC Transfer Function.
15.3.3 .DISTO: Distortion Analysis
15.3.4 .NOISE: Noise Analysis
15.3.5 .OP: Operating Point Analysis
15.3.6 .PZ: Pole-Zero Analysis

15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

15.3.8 .TF: Transfer Function Analysis
15.3.9 .TRAN: Transient Analysis
15.3.10 Transient noise analysis (at low frequency)

15.3.11 .PSS: Periodic Steady State Analysis

CONTENTS

243

CONTENTS 13

15.4 Measurements after AC, DC and Transient Analysis 265
154.1 meas(ure) e e 265
15.4.2 batch versus interactive mode 265
1543 Generalremarkso 265
1544 Input e e 266
1545 TrigTarg o e 266
154.6 Find... When 268
15.47 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT 269
1548 Integ e 269
1549 param L e e 270
15.4.10 parCexpression’) e e e 270
15411 Deriv o 271
154.12Moreexampleso e e 271

15.5 Safe Operating Area (SOA) warning messages « o« v o v o o .. 272
15.5.1 Resistor and Capacitor SOA model parameters 273
15.5.2 Diode SOA model parameter 273
15.5.3 BJT SOA model parameter 273
15.5.4 MOS SOA model parameter 273

15.6 BatchOutput e 274
15.6.1 .SAVE: Name vector(s) tobe savedinrawfile 274
15.6.2 PRINTLines e 275
1563 PLOTLines 275
15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output 276
15.6.5 .PROBE: Name vector(s) tobe savedinraw file 277
15.6.6 par(’expression’): Algebraic expressions foroutput 277
15.6.7 .width 278

15.7 Measuring current through device terminals 278
15.7.1 Adding a voltage source inseries 278
15.7.2 Using option ’savecurrents’ o .o i e e 278

16 Starting ngspice 281

16.1 Introduction e 281

16.2 Where to obtain ngspice Lo e 281

16.3 Command line options for starting ngspice and ngnutmeg 282

16.4 Starting OptionS e e e e e e e e e e e 284

14 CONTENTS

16.5 Standard configuration file spinit oL L. 286
16.6 User defined configuration file .spiceinit 287
16.7 Environmental variables oo 287
16.7.1 Ngspice specific variables 287
16.7.2 Common environment variables 288

16.8 MemoOry USage . . « v v v v v v i e e e e e e e e e e e e e e 288
169 Simulationtime 289
16.10Ngspice on multi-core processors using OpenMP 289
16.10.1 Introduction oL 289
16.10.2Internals 290
16.10.3Someresults L 290
16.10.4Usage o e e e e e e e 290
16.10.5 Literature e e e 291
I6.11Servermode option =S e e e e 292
16.12Ngspice control via input, output fifoso 293
16.13Compatibility 295
16.13.1 Compatibility mode 295
16.13.2Missing functions L 295
16.13.3Deviceso 296
16.13.4 Controls and commands 296
16.13.5 PSPICE Compatibilitymode 297
TO.14ATEStS . . o o o o e e e e e e 298
16.15Reporting bugs and errorso 299
17 Interactive Interpreter 301
17.1 Introduction L e e 301
17.2 Expressions, Functions, and Constants 302
173 Plots o e e e 306
17.4 Command Interpretation 307
174.1 Ontheconsole 307
17.4.2 Scripts o e e e e 307

1743 Add-ontocircuitfile 307

CONTENTS 15

17.5 Commands 308
17.5.1 Ac*: Perform an AC, small-signal frequency response analysis 308
17.5.2 Alias: Create an alias foracommand 309
17.5.3 Alter*: Change a device or model parameter 309
17.5.4 Altermod*: Change model parameter(s) 310
17.5.5 Alterparam*: Change value of a global parameter 312
17.5.6 Asciiplot: Plot values using old-style character plots 312
17.5.7 Aspice*: Asynchronous ngspicerun 312
17.5.8 Bug: Mailabugreport 313
17.5.9 Cd: Changedirectory o v v vt vttt 313
17.5.10 Cdump: Dump the control flow to the screen 313
17.5.11 Circbyline*: Enter a circuitline by line 314
17.5.12 Codemodel*: Load an XSPICE code model library 315
17.5.13 Compose: Compose a VECLOT v v v v v v v v v i e e 315
17.5.14 Dc*: Perform a DC-sweep analysis 315
17.5.15 Define: Define a function, 316
17.5.16 Deftype: Define a new type for a vectororplot 316
17.5.17 Delete*: Remove a trace or breakpoint. 316
17.5.18 Destroy: Delete an outputdataset 317
17.5.19 Devhelp: information on available devices 317
17.5.20 Diff: Compare vectors o 317
17.5.21 Display: List known vectors and types 318
17.5.22Echo: Printtext 318
17.5.23 Edit*: Edit the current circuit, 318
17.5.24 Edisplay: Print a list of all the eventnodes 319
17.5.25 Eprint: Print an eventdrivennode 319
17.5.26 Eprved: Dump event nodes in VCD format 319
17.5.27 FFT: fast Fourier transform of vectors 319
17.5.28 Fourier: Perform a Fourier transform 321
17.5.29 Gnuplot: Graphics output via gnuplot 322
17.5.30 Hardcopy: Save a plot to a file for printing 322
17.5.31 Help: Print summaries of Ngspice commands 323
17.5.32 History: Review previous commands 323
17.5.33 Inventory: Print circuitinventory 325

17.5.34 Iplot*: Incremental plot 326

16

CONTENTS

17.5.35 Jobs*: List active asynchronous ngspiceruns 326
17.5.36 Let: Assignavaluetoavector 326
17.5.37 Linearize*: Interpolate to a linearscale 327
17.5.38 Listing*: Print a listing of the current circuit 327
17.5.39 Load: Loadrawfiledata 328
17.5.40 Mc_source*: Reload the circuit netlist from an internal storage 328
17.5.41 Meas*: Measurements on simulationdata 328
17.5.42 Mdump*: Dump the matrix values to a file (or to console) 329

17.5.43 Mrdump*: Dump the matrix right hand side values to a file (or to console)329

17.5.44 Noise*: Noise analysis 329
17.5.45 Op*: Perform an operating point analysis 330
17.5.46 Option™*: Set angspice option 330
17.5.47 Plot: Plot vectorson the display 331
17.5.48 Pre_<command>: execute commands prior to parsing the circuit 332
17.5.49 Print: Printvalues 333
17.5.50 Psd: power spectral density of vectors 333
17.5.51 Quit: Leave Ngspiceor Nutmeg 334
17.5.52 Rehash: Reset internal hashtables 334
17.5.53 Remcirc*: Remove the current circuit 334
17.5.54 Reset*: Resetananalysis 334
17.5.55 Reshape: Alter the dimensionality or dimensions of a vector 335
17.5.56 Resume*: Continue a simulation afterastop 335
17.5.57 Rspice*: Remote ngspice submission 335
17.5.58 Run*: Run analysis from the inputfile 336
17.5.59 Rusage: Resourceusage 336
17.5.60 Save*: Save asetofoutputs, 337
17.5.61 Sens*: Run a sensitivity analysis 338
17.5.62 Set: Set the valueof avariable 339
17.5.63 Setcirc*: Change the current circuit 339
17.5.64 Setplot: Switch the current set of vectors 339
17.5.65 Setscale: Set the scale vector for the currentplot 340
17.5.66 Settype: Setthe typeofavector 340
17.5.67 Shell: Call the command interpreter 340
17.5.68 Shift: Alteralistvariable 341

17.5.69 Show*: Listdevice state 341

CONTENTS 17

17.5.70 Showmod*: List model parameter values 341
17.5.71 Snload*: Load the snapshotfile 341
17.5.72 Snsave*: Save a snapshotfile 342
17.5.73 Source: Read a ngspice inputfile 343
17.5.74 Spec: Create a frequency domainplot 344
17.5.75 Status*: Display breakpoint information 344
17.5.76 Step*: Run a fixed number of time-points 344
17.5.77 Stop*: Setabreakpoint 345
17.5.78 Strcmp: Compare two Stringso 345
17.5.79 Sysinfo*: Print system information 346
17.5.80 Tf*: Run a Transfer Function analysis 346
17.5.81 Trace*: Tracenodes 347
17.5.82 Tran*: Perform a transient analysis 347
17.5.83 Transpose: Swap the elements in a multi-dimensional dataset 348
17.5.84 Unalias: Retractan alias 348
17.5.85 Undefine: Retract a definition 348
17.5.86 Unlet: Delete the specified vector(s) 348
17.5.87 Unset: Cleara variable 349
17.5.88 Version: Print the version of ngspice 349
17.5.89 Where*: Identify troublesome node or device 350
17.5.90 Wrdata: Write data to a file (simple table) 351
17.5.91 Write: Write data to a file (Spice3f5 format) 351
17.5.92 Wrs2p: Write scattering parameters to file (Touchstone® format) . . . 352
17.5.93 Xgraph: use the xgraph(1) program for plotting. 352
17.6 Control Structures e 353
17.6.1 While-End 353
17.6.2 Repeat-End 353
17.6.3 Dowhile-End L 353
17.64 Foreach-End L 353
17.6.5 If-Then-Else 354
17.6.6 Label 354
17.6.7 GOto oo 354
17.6.8 Continue o i e 355
17.6.9 Break 355

17.7 Internally predefined variables 355

18 CONTENTS
I7.8 Scripts o e e e e e e 360
17.8.1 Variables 361
17.8.2 Vectors i e 361
17.83 Commands e 361
17.8.4 control structures 361
17.8.5 Example script ’spectrum’ 365
17.8.6 Example script for random numbers 367
17.8.7 Parameter SWEeP v v v v i e e e e e e e e 368
17.8.8 Outputredirection vt 368

17.9 Scattering parameters (s-parameters)o u e e e 370
179.1 Intro. oo o 370
17.9.2 S-parameter measurement basics 370
1793 Usage o v i it e e e 372
17.10MISCELLANEOUS s 372
I7.01BUES . . . o o 373
18 Ngspice User Interfaces 375
18.1 MS Windows Graphical User Interface 375
182 MS Windows Console 377
183 Linux e e e e e e 378
18.4 CygWin e 378
185 Errorhandling 378
18.6 Postscript printing options Lo e 379
18.7 Gnuplot e e e e e e 380
18.8 Integration with CAD software and ‘third party’ GUIs 380
188.1 KiCad o 380
18.8.2 GNU Spice GUI 380
18.8.3 XCircuit 380
1884 GEDA e 380
18.8.5 MSEspice 381

18.8.6 GNU Octave s e e 381

CONTENTS

19 ngspice as shared library or dynamic link library

20

19.1

19.2

19.3

19.4

19.5

Compile options e e
19.1.1 Howtogetthesources
19.1.2 Linux, MINGW,CYGWIN
19.1.3 MS Visual Studio
Linking shared ngspice to a calling application
19.2.1 Linking during creating thecaller
19.2.2 Loadingatruntime
Shared ngspice API
19.3.1 structs and types defined for transportingdata
19.3.2 Exported functions Lo
19.3.3 Callback functions
General remarks onusingthe API,
19.4.1 Loadinganetlist
19.4.2 Running the simulation
19.4.3 Accessingdata Lo L
19.4.4 Altering model or device parameters
1945 Output e e
19.4.6 Errorhandling

Example applications

TCLspice

20.1
20.2
20.3
20.4
20.5

telspice frameworko L oL oL L
tclspice documentation L oL L e
spicetoblto
Running TCLspice
examples L e e
20.5.1 Active capacitor measurement
20.5.2 Optimization of a linearization circuit for a Thermistor

20.5.3 Progressivedisplay e

19

383
383
383
383
384
384
384
384
384
384
386
389
391
391
392
393
394
394
395
395
395
396
397
398
399

CONTENTS

20.6 Compiling e 410
20.6.1 Linux e e 410
20.6.2 MSWindows L 410

20.7 MS Windows 32 Bitbinaries Lo 411

Example Circuits 413

21.1 AC coupled transistor amplifiero 413

21.2 Differential Pair 419

21.3 MOSFET Characterization v vt v v e v 419

214 RTL Inverter. o o i e e e e e e 419

21.5 Four-Bit Binary Adder (Bipolar) 420

21.6 Four-Bit Binary Adder (MOS) o 422

21.7 Transmission-Line Inverter oL oL 423

Statistical circuit analysis 425
22.1 Introduction e 425
22.2 Using random param(eters)o it 425
22.3 Behavioral sources (B, E, G, R, L, C) with random control 427
22.4 ngspice scripting language Lo 428
22.5 Monte-Carlo Simulation Lo 429
225.1 Example 1 e 429
2252 Example2 e 431
2253 Example3 e 431
22.6 Dataevaluation withGnuplot 431
Circuit optimization with ngspice 435
23.1 Optimizationof acircuito 435
23.2 ngspice optimizer using ngspice SCripts e 436
23.3 ngspice optimizer using tclspiceo Lo oL 436
23.4 ngspice optimizer using a Pythonscript 436
23.5 ngspice optimizer using ASCO Lo 436
23.5.1 Three stage operational amplifier. 437
23.5.2 Digitalinverter e e e 438
2353 Bandpasso e e 440

23.5.4 Class-E power amplifier 441

CONTENTS

24

IT

25

26

27

28

Notes

241 GlOSSAIY . . . v v v e e e e e e e e
24.2 Acronyms and Abbreviations
243 ToDo o e

XSPICE Software User’s Manual

XSPICE Basics

25.1 ngspice with the XSPICE option
25.2 The XSPICE Code Model Subsystem
25.3 XSPICE Top-Level Diagram

Execution Procedures

26.1 Simulation and Modeling Overview
26.1.1 Describing the Circuit

26.2 Circuit Description Syntax e
26.2.1 XSPICE Syntax Extensions

26.3 How to create code models

Example circuits

27.1 Amplifier with XSPICE model ‘gain”

27.2 XSPICE advancedusage i
272.1 Circuitexample C3 e
27.2.2 Runningexample C3

Code Models and User-Defined Nodes
28.1 Code Model Data Type Definitions
28.2 Creating Code Models
28.3 Creating User-Defined Nodes
28.4 Adding anew code model library L.,
28.5 Compiling and loading the new code model (library)
28.6 Interface SpecificationFile Lo
28.6.1 TheNameTable
28.6.2 ThePortTable,
28.6.3 The Parameter Table
28.6.4 Static Variable Table oo,

21

443
443
444
445

449

451
451
451
452

453
453
453
459
459
461

465
465
467
467
470

22 CONTENTS

28.7 Model Definition Fileo 0oL 486
28.7.1 MaCros e e 486
28.7.2 Function Library 495

28.8 User-Defined Node Definition File 502
28.8.1 Macros 503
28.8.2 FunctionLibrary 503
28.8.3 Example UDN Definition File 506

29 Error Messages 511

29.1 Preprocessor Error Messages Lo oo 511

29.2 Simulator Error Messages oL o 516

29.3 Code Model Error Messages oo 517
293.1 Code Model aswitch 517
29.3.2 Code Model climit 518
2933 CodeModelcore 518
2934 CodeModeld osc 518
29.3.5 Code Modeld_source i 519
29.3.6 Code Model d_state 519
29.3.7 Code Modeloneshot 520
293.8 Code Modelpwl L 520
2939 Code Models_xfer e 520
293.10Code Model sine 521
29.3.11 Code Model square 521
29.3.12Code Model triangle, 522

III CIDER 523
30 CIDER User’s Manual 525

30.1 SPECIFICATION s e e 525
30.1.1 Examples e 526

30.2 BOUNDARY, INTERFACE 527
30.2.1 DESCRIPTION e 527
30.2.2 PARAMETERS 528
30.2.3 EXAMPLES 528

303 COMMENT e 528

CONTENTS 23

30.3.1 DESCRIPTION 529
30.3.2 EXAMPLES 529
304 CONTACT o e e e e s s e s e 529
30.4.1 DESCRIPTION 529
3042 PARAMETERS 529
3043 EXAMPLES 529
3044 SEEALSO e 530
30.5 DOMAIN,REGION 530
30.5.1 DESCRIPTION it 530
30.5.2 PARAMETERS 530
30.5.3 EXAMPLES 530
30.5.4 SEEALSO e 531
30.6 DOPING e 531
30.6.1 DESCRIPTION 531
30.6.2 PARAMETERS 534
30.6.3 EXAMPLES 534
30.64 SEEALSO e 535
30.7 ELECTRODE e 535
30.7.1 DESCRIPTION i 535
30.7.2 PARAMETERS 536
30.7.3 EXAMPLES 536
3074 SEEALSO e 536
30.8 END o o 536
30.8.1 DESCRIPTION i . 537
309 MATERIAL 537
30.9.1 DESCRIPTION it 537
30.9.2 PARAMETERS 538
3093 EXAMPLES 538
309.4 SEEALSO e 538
30.10METHOD e 539
30.10.1 DESCRIPTION e 539
30.10.2 Parameters oL e e e e 539
30.10.3Exampleso 539
30.11Mobility 540

30.11.1 Descriptiono e e e e e e e 540

24

CONTENTS

30.11.2Parameters 541
30.11.3Examples 541
30.114SEE ALSO e 541
30.1I5BUGS 542
30.12MODELS 542
30.12.1 DESCRIPTION e 542
30.12.2Parameters L e e 542
30123 Examples e e e 542
30.12.4Seealso 543
30.12.5Bugs . ..o 543
30.130PTIONS o e 543
30.13.1 DESCRIPTION e 543
30.13.2Parameters L.l 544
30.13.3Examples e e e 544
30.13.48eealso 544
30.140UTPUT 545
30.14.1 DESCRIPTION e 545
30.14.2 Parameters oL e e e e e e e e 546
30.143Examples e 546
30.144SEE ALSO o e 547
30.15TITLE o e e 547
30.15.1 DESCRIPTION 547
30.152EXAMPLES 547
30.153BUGS e 547
3016 X.MESH, YMESH 547
30.16.1 DESCRIPTION e 548
30.16.2Parameters oL e e e e 549
30.16.3EXAMPLES 549
30.16.4SEE ALSO e 549
30.17NUMD e 550
30.17.1 DESCRIPTION e 550
30.17.2Parameters L e e 551
30.17.3 EXAMPLES 551
30.174SEE ALSO 552

30.175BUGS o e 552

CONTENTS 25

30.18NBIT . . 552
30.18.1 DESCRIPTION e 552
30.18.2Parametersl 553
30.18.3EXAMPLES 553
30.184SEE ALSO 554
30.185BUGS e 554

30.19NUMOS e 554
30.19.1 DESCRIPTION ittt 554
30.19.2 Parameters L oL e 555
30.193EXAMPLES 555
30.194SEE ALSO 556

30.20Cider examples L L e e e 556

IV Appendices 557
31 Model and Device Parameters 559

31.1 Accessing internal device parameters 559

31.2 Elementary Devices e 561
31.2.1 Resistor o e e 561
31.2.2 Capacitor - Fixed capacitor 563
31.2.3 Inductor - Fixed inductor 564
31.2.4 Mutual - Mutual Inductor. L oo 565

31.3 Voltage and current SOUICES« . o v v v v v vt e 566
31.3.1 ASRC - Arbitrary source 566
31.3.2 Isource - Independent current source 567
31.3.3 Vsource - Independent voltage source 568
31.3.4 CCCS - Current controlled current source 569
31.3.5 CCVS - Current controlled voltage source 569
31.3.6 VCCS - Voltage controlled current source 570
31.3.7 VCYVS - Voltage controlled voltage source 570

31.4 Transmission Lines L 571
31.4.1 CplLines - Simple Coupled Multiconductor Lines 571
31.4.2 LTRA - Lossy transmissionline 572
31.4.3 Tranline - Lossless transmissionline 573

31.4.4 TransLine - Simple Lossy Transmission Line 574

26 CONTENTS

3145 URC-UniformR.C.line 575

315 BITs . o o o o e 576
31.5.1 BJT - Bipolar Junction Transistor 576
31.5.2 BIJT - Bipolar Junction Transistor Level 2 579
31.5.3 VBIC - Vertical Bipolar Inter-Company Model 582

31.6 MOSFETS o e 586
31.6.1 MOSI - Level 1 MOSFET model with Meyer capacitance model 586
31.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model 589
31.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model 593
31.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model 597
31.6.5 MOS9 - Modified Level 3 MOSFET model 600
31.6.6 BSIMI - Berkeley Short Channel IGFET Model 604
31.6.7 BSIM2 - Berkeley Short Channel IGFET Model 607
31.6.8 BSIM3 611
31.6.9 BSIM4 612

32 Compilation notes 615
32.1 Ngspice Installation under Linux (and other "UNIXes’) 615
32.1.1 Prerequisites e e 615
32.1.2 Installfrom Git L 615
32.1.3 Install from a tarball, e.g. ngspice-rework-28.tgz 617
32.1.4 Compilation using an user defined directory tree for object files 617
32.1.5 ngspiceasasharedlibrary L. 618
32.1.6 AdvancedInstall 618
32.1.7 Compilersand Options 620
32.1.8 Compiling For Multiple Architectures 621
32.1.9 Installation Names 621
32.1.10Optional Features 621
32.1.11 Specifying the System Type 621
32.1.12 Sharing Defaults o 622
32.1.13 Operation Controls e 622

32.2 Ngspice Compilation under Windows OS 622
32.2.1 Compile ngspice with MS Visual Studio 2015 0r 2017 622
32.2.2 How to make ngspice with MINGW and MSYS 625

32.2.3 64 Bit executables with MINGW-w64 627

CONTENTS 27

32.2.4 make ngspice withpure CYGWIN 629
32.2.5 ngspice mingw or cygwin console executable w/o graphics 629
32.2.6 ngspice for MS Windows, cross compiled from Linux 629

32.3 RepPOrting €ITOTS . . . v v v v v v v e e e e e e e e e e e e e e e e 630
33 Copyrights and licenses 631
33.1 Documentation license 631
33.2 ngspice license e e 631
33.3 Some license details L. Lo L 631
333.1 CC-BY-SA e 631
33.3.2 ‘Modified’ BSDlicense 632

33.4 Some notes on the historical evolvement of the ngspice licenses 633
33.4.1 XSPICE SOFTWARE (documentation) copyright 633
33.4.2 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by 33.4.3)633
33.43 ‘Modified’ BSDlicense, 634
3344 XSPICE e 634
33.4.5 tclspice, numparamo e e e e e e e e 634

33.4.6 Linking to GPLd libraries (e.g. readline, fftw, table.cm): 635

28

CONTENTS

Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,
2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have a full
manual in a fraction of the time that writing a completely new text would have required. The
use of LaTex and LyX instead of TeXinfo, which was the original encoding for the manual,
further helped to reduce the writing effort and improved the quality of the result, at the expense
of an on-line version of the manual but, due to the complexity of the software I hardly think that
users will ever want to read an on-line text version.

In writing this text I followed the spice3f5 manual, both in the chapter sequence and presentation
of material, mostly because that was already the user manual of SPICE.

Ngspice is an open source software, users can download the source code, compile, and run it.
This manual has an entire chapter describing program compilation and available options to help
users in building ngspice (see Chapt. 32). The source package already comes with all ‘safe’
options enabled by default, and activating the others can produce unpredictable results and thus
is recommended to expert users only. This is the first ngspice manual and I have removed all
the historical material that described the differences between ngspice and spice3, since it was
of no use for the user and not so useful for the developer who can look for it in the Changelogs
of in the revision control system.

I want to acknowledge the work done by Emmanuel Rouat and Arno W. Peters for converting the
original spice3f documentation to TgXinfo. Their effort gave ngspice users the only available
documentation that described the changes for many years. A good source of ideas for this
manual came from the on-line spice3f manual written by Charles D.H. Williams (Spice3f5
User Guide), constantly updated and useful for its many insights.

As always, errors, omissions and unreadable phrases are only my fault.
Paolo Nenzi

Roma, March 24th 2001

29

http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc
http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/index.html#toc

30 CONTENTS

Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward, Warden of the King’s Ale

Preface to the actual edition (as May 2018)

Due to the wealth of new material and options in ngspice the actual order of chapters has been
revised. Several new chapters have been added. The LyX text processor has allowed adding
internal cross references. The PDF format has become the standard format for distribution of
the manual. Within each new ngspice distribution (starting with ngspice-21) a manual edition
is provided reflecting the ngspice status at the time of distribution. At the same time, located
at ngspice manuals, the manual is constantly updated. Every new ngspice feature should enter
this manual as soon as it has been made available in the Git source code master branch.

Holger Vogt
Miilheim, 2018

http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/

Acknowledgments

ngspice contributors

Spice3 and CIDER were originally written at The University of California at Berkeley (USA).
XSPICE has been provided by Georgia Institute of Technology, Atlanta (USA).

Since then, there have been many people working on the software, most of them releasing
patches to the original code through the Internet.

The following people have contributed in some way:

Vera Albrecht,
Cecil Aswell,

Giles C. Billingsley,
Phil Barker,

Steven Borley,
Stuart Brorson,
Mansun Chan,
Wayne A. Christopher,
Al Davis,

Glao S. Dezai,

Jon Engelbert,
Daniele Foci,

Noah Friedman,
David A. Gates,
Alan Gillespie,
John Heidemann,
Marcel Hendrix,
Jeffrey M. Hsu,
JianHui Huang,

S. Hwang,

Chris Inbody,
Gordon M. Jacobs,
Min-Chie Jeng,
Beorn Johnson,
Stefan Jones,
Kenneth H. Keller,
Francesco Lannutti,
Robert Larice,

31

32

Mathew Lew,

Robert Lindsell,
Weidong Liu,
Kartikeya Mayaram,
Richard D. McRoberts,
Manfred Metzger,
Wolfgang Muees,
Paolo Nenzi,

Gary W. Ng,

Hong June Park,
Stefano Perticaroli,
Arno Peters,
Serban-Mihai Popescu,
Georg Post,

Thomas L. Quarles,
Emmanuel Rouat,
Jean-Marc Routure,
Jaijeet S. Roychowdhury,
Lionel Sainte Cluque,
Takayasu Sakurai,
Amakawa Shuhei,
Kanwar Jit Singh,

Bill Swartz,

Hitoshi Tanaka,

Steve Tell,

Andrew Tuckey,
Andreas Unger,
Holger Vogt,

Dietmar Warning,
Michael Widlok,
Charles D.H. Williams,
Antony Wilson,

and many others...

CONTENTS

If someone helped in the development and has not been inserted in this list then this omis-
sion was unintentional. If you feel you should be on this list then please write to <ngspice-
devel @lists.sourceforge.net>. Do not be shy, we would like to make a list as complete as

possible.

mailto:ngspice-devel@lists.sourceforge.net
mailto:ngspice-devel@lists.sourceforge.net

Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses. Ci-
rcuits may contain resistors, capacitors, inductors, mutual inductors, independent or dependent
voltage and current sources, loss-less and lossy transmission lines, switches, uniform distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETsSs,
and MOSFETs.

Some introductory remarks on how to use ngspice may be found in Chapt. 21.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family. Ng-
spice is being developed to include new features to existing Spice3f5 and to fix its bugs. Im-
proving a complex software like a circuit simulator is a very hard task and, while some impro-
vements have been made, most of the work has been done on bug fixing and code refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values. There are three models for bipolar junction transistors, all
based on the integral-charge model of Gummel and Poon; however, if the Gummel-Poon pa-
rameters are not specified, the basic model (BJT) reduces to the simpler Ebers-Moll model.
In either case and in either models, charge storage effects, ohmic resistances, and a current-
dependent output conductance may be included. The second bipolar model BJT2 adds dc cur-
rent computation in the substrate diode. The third model (VBIC) contains further enhancements
for advanced bipolar devices.

The semiconductor diode model can be used for either junction diodes or Schottky barrier di-
odes. There are two models for JFET: the first (JFET) is based on the model of Shichman and
Hodges, the second (JFET?2) is based on the Parker-Skellern model. All the original six MOS-
FET models are implemented: MOS]1 is described by a square-law I-V characteristic, MOS2 [1]
is an analytical model, while MOS3 [1] is a semi-empirical model; MOSG6 [2] is a simple analy-
tic model accurate in the short channel region; MOS9, is a slightly modified Level 3 MOSFET
model - not to confuse with Philips level 9; BSIM 1 [3, 4]; BSIM2 [5] are the old BSIM (Ber-
keley Short-channel IGFET Model) models. MOS2, MOS3, and BSIM include second-order
effects such as channel-length modulation, subthreshold conduction, scattering-limited velocity
saturation, small-size effects, and charge controlled capacitances. The recent MOS models for
submicron devices are the BSIM3 (Berkeley BSIM3 web page) and BSIM4 (Berkeley BSIM4
web page) models. Silicon-on-insulator MOS transistors are described by the SOI models from
the BSIMSOI family (Berkeley BSIMSOI web page) and the STAG [18] one. There is partial
support for a couple of HFET models and one model for MESA devices.

33

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM3
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/?page=BSIMSOI

34 CHAPTER 1. INTRODUCTION

Ngspice supports mixed-level simulation and provides a direct link between technology para-
meters and circuit performance. A mixed-level circuit and device simulator can provide greater
simulation accuracy than a stand-alone circuit or device simulator by numerically modeling the
critical devices in a circuit. Compact models can be used for all other devices. The mixed-
level extensions to ngspice is CIDER, a mixed-level circuit and device simulator integrated into
ngspice code.

Ngspice supports mixed-signal simulation through the integration of XSPICE code. XSPICE
software, developed as an extension to Spice3C1 by GeorgiaTech, has been enhanced and ported
to ngspice to provide ‘board’ level and mixed-signal simulation.

The XSPICE extension enables pure digital simulation as well.

New devices can be added to ngspice by several means: behavioral B-, E- or G-sources, the
XSPICE code-model interface for C-like device coding, and the ADMS interface based on
Verilog-A and XML.

Finally, numerous small bugs have been discovered and fixed, and the program has been ported
to a wider variety of computing platforms.

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers, and
others who want to analyze the operation of a design without examining the physical circuit.
Simulation allows you to change quickly the parameters of many of the circuit elements to
determine how they affect the circuit response. Often it is difficult or impossible to change
these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time. The key to
efficient execution is choosing the proper level of modeling abstraction for a given problem. To
support a given modeling abstraction, the simulator must provide appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a digital
simulation algorithm. Ngspice inherits the XSPICE framework and supports both analog and
digital algorithms and is a ‘mixed-mode’ simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a continuous
time or frequency interval. The circuit response is obtained by iteratively solving Kirchhoff’s
Laws for the circuit at time steps selected to ensure the solution has converged to a stable value
and that numerical approximations of integrations are sufficiently accurate. Since Kirchhoff’s
laws form a set of simultaneous equations, the simulator operates by solving a matrix of equa-
tions at each time point. This matrix processing generally results in slower simulation times
when compared to digital circuit simulators.

The response of a circuit is a function of the applied sources. Ngspice offers a variety of
source types including DC, sine-wave, and pulse. In addition to specifying sources, the user
must define the type of simulation to be run. This is termed the ‘mode of analysis’. Analysis
modes include DC analysis, AC analysis, and transient analysis. For DC analysis, the time-
varying behavior of reactive elements is neglected and the simulator calculates the DC solution

1.1. SIMULATION ALGORITHMS 35

of the circuit. Swept DC analysis may also be accomplished with ngspice. This is simply the
repeated application of DC analysis over a range of DC levels for the input sources. For AC
analysis, the simulator determines the response of the circuit, including reactive elements to
small-signal sinusoidal inputs over a range of frequencies. The simulator output in this case
includes amplitudes and phases as a function of frequency. For transient analysis, the circuit
response, including reactive elements, is analyzed to calculate the behavior of the circuit as a
function of time.

1.1.2 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A primary
difference is that a solution of Kirchhoft’s laws is not required. Instead, the simulator must only
determine whether a change in the logic state of a node has occurred and propagate this change
to connected elements. Such a change is called an ‘event’.

When an event occurs, the simulator examines only those circuit elements that are affected by
the event. As a result, matrix analysis is not required in digital simulators. By comparison,
analog simulators must iteratively solve for the behavior of the entire circuit because of the
forward and reverse transmission properties of analog components. This difference results in
a considerable computational advantage for digital circuit simulators, which is reflected in the
significantly greater speed of digital simulations.

1.1.3 Mixed-Signal Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately a mix of analog and digital simulation techniques is required. When
analog simulation algorithms are combined with digital simulation algorithms, the result is
termed ‘mixed-mode simulation’.

Two basic methods of implementing mixed-mode simulation used in practice are the ‘native
mode’ and ‘glued mode’ approaches. Native mode simulators implement both an analog algo-
rithm and a digital algorithm in the same executable. Glued mode simulators actually use two
simulators, one of which is analog and the other digital. This type of simulator must define an
input/output protocol so that the two executables can communicate with each other effectively.
The communication constraints tend to reduce the speed, and sometimes the accuracy, of the
complete simulator. On the other hand, the use of a glued mode simulator allows the component
models developed for the separate executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation in the
same executable. The underlying algorithms of ngspice (coming from XSPICE and its Code
Model Subsystem) allow use of all the standard SPICE models, provide a pre-defined collection
of the most common analog and digital functions, and provide an extensible base on which to
build additional models.

1.1.3.1 User-Defined Nodes

Ngspice supports creation of ‘User-Defined Node’ types. User-Defined Node types allow you
to specify nodes that propagate data other than voltages, currents, and digital states. Like digital

36 CHAPTER 1. INTRODUCTION

nodes, User-Defined Nodes use event-driven simulation, but the state value may be an arbitrary
data type. A simple example application of User-Defined Nodes is the simulation of a digital
signal processing filter algorithm. In this application, each node could assume a real or integer
value. More complex applications may define types that involve complex data such as digital
data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined Node
capability where the digital state is defined by a data structure that holds a Boolean logic state
and a strength value.

1.1.4 Mixed-Level Simulation

Ngspice can simulate numerical device models for diodes and transistors in two different ways,
either through the integrated DSIM simulator or interfacing to GSS TCAD system. DSIM is an
internal C-based device simulator that is part of the CIDER simulator, the mixed-level simulator
based on SPICE3f5. CIDER within ngspice provides circuit analyses, compact models for
semiconductor devices, and one- or two-dimensional numerical device models.

1.14.1 CIDER (DSIM)

CIDER integrates the DSIM simulator with Spice3. It provides accurate, one- and two-dimensional
numerical device models based on the solution of Poisson’s equation, and the electron and
hole current-continuity equations. DSIM incorporates many of the same basic physical models
found in the Stanford two-dimensional device simulator PISCES. Input to CIDER consists of
a SPICE-like description of the circuit and its compact models, and PISCES-like descriptions
of the structures of numerically modeled devices. As a result, CIDER should seem familiar to
designers already accustomed to these two tools. The CIDER input format has great flexibility
and allows access to physical model parameters. New physical models have been added to allow
simulation of state-of-the-art devices. These include transverse field mobility degradation im-
portant in scaled-down MOSFETs and a polysilicon model for poly-emitter bipolar transistors.
Temperature dependence has been included over the range from -50C to 150C. The numerical
models can be used to simulate all the basic types of semiconductor devices: resistors, MOS
capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled with or wit-
hout a substrate contact. Support has been added for the management of device internal states.
Post-processing of device states can be performed using the ngnutmeg user interface.

1.14.2 GSS TCAD

GSS is a TCAD software that enables two-dimensional numerical simulation of semiconductor
device with well-known drift-diffusion and hydrodynamic method. GSS has Basic DDM (drift-
diffusion method) solver, Lattice Temperature Corrected DDM solver, EBM (energy balance
method) solver and Quantum corrected DDM solver based on density-gradient theory. The GSS
program is directed via input statements by a user specified disk file. Supports triangle mesh
generation and adaptive mesh refinement. Employs PMI (physical model interface) to support
various materials, including compound semiconductor materials such as SiGe and AlGaAs.
Supports DC sweep, transient and AC sweep calculations. The device can be stimulated by
voltage or current source(s).

1.2. SUPPORTED ANALYSES 37

GSS is no longer updated, but is still available as open source as a limited edition of the com-
mercial GENIUS TCAD tool. This interface has not been tested with actual ngspice versions
and may need some maintainance efforts.

1.2 Supported Analyses

The ngspice simulator supports the following different types of analysis:
1. DC Analysis (Operating Point and DC Sweep)
. AC Small-Signal Analysis

. Transient Analysis

. Small-Signal Distortion Analysis

2
3
4. Pole-Zero Analysis
5
6. Sensitivity Analysis
7

. Noise Analysis

Applications that are exclusively analog can make use of all analysis modes with the exception
of Code Model subsystem that do not implements Pole-Zero, Distortion, Sensitivity and Noise
analyses. Event-driven applications that include digital and User-Defined Node types may make
use of DC (operating point and DC sweep) and Transient only.

In order to understand the relationship between the different analyses and the two underlying
simulation algorithms of ngspice, it is important to understand what is meant by each analysis
type. This is detailed below.

1.2.1 DC Analysis

The dc analysis portion of ngspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. The dc analysis options are specified on the .DC, . TF, and .OP
control lines.

There is assumed to be no time dependence on any of the sources within the system description.
The simulator algorithm subdivides the circuit into those portions that require the analog simu-
lator algorithm and such that require the event-driven algorithm. Each subsystem block is then
iterated to solution, with the interfaces between analog nodes and event-driven nodes iterated
for consistency across the entire system.

Once stable values are obtained for all nodes in the system, the analysis halts and the results
may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the transient
initial conditions, and prior to an ac small-signal analysis to determine the linearized, small-
signal models for nonlinear devices. If requested, the dc small-signal value of a transfer function
(ratio of output variable to input source), input resistance, and output resistance is also computed
as a part of the dc solution. The dc analysis can also be used to generate dc transfer curves: a
specified independent voltage, current source, resistor or temperature is stepped over a user-
specified range and the dc output variables are stored for each sequential source value.

38 CHAPTER 1. INTRODUCTION

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution of the
analog system described at a particular frequency or set of frequencies. This analysis is similar
to the DC analysis in that it represents the steady-state behavior of the described system with a
single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear circuit
is then analyzed over a user-specified range of frequencies. The desired output of an ac small-
signal analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit
has only one ac input, it is convenient to set that input to unity and zero phase, so that output
variables have the same value as the transfer function of the output variable with respect to the
1nput.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis be-
gins by obtaining a DC solution to provide a point of departure for simulating time-varying
behavior. Once the DC solution is obtained, the time-dependent aspects of the system are rein-
troduced, and the two simulator algorithms incrementally solve for the time varying behavior of
the entire system. Inconsistencies in node values are resolved by the two simulation algorithms
such that the time-dependent waveforms created by the analysis are consistent across the entire
simulated time interval. Resulting time-varying descriptions of node behavior for the specified
time interval are accessible to you.

All sources that are not time dependent (for example, power supplies) are set to their dc value.
The transient time interval is specified on a . TRAN control line.

1.2.4 Pole-Zero Analysis

The pole-zero analysis portion of Ngspice computes the poles and/or zeros in the small-signal
ac transfer function. The program first computes the dc operating point and then determines
the linearized, small-signal models for all the nonlinear devices in the circuit. This circuit is
then used to find the poles and zeros of the transfer function. Two types of transfer functions
are allowed: one of the form (output voltage)/(input voltage) and the other of the form (output
voltage)/(input current). These two types of transfer functions cover all the cases and one can
find the poles/zeros of functions like input/output impedance and voltage gain. The input and
output ports are specified as two pairs of nodes. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs
and diodes. Transmission lines are not supported. The method used in the analysis is a sub-
optimal numerical search. For large circuits it may take a considerable time or fail to find all
poles and zeros. For some circuits, the method becomes ‘lost’ and finds an excessive number
of poles or zeros.

1.2. SUPPORTED ANALYSES 39

1.2.5 Small-Signal Distortion Analysis

The distortion analysis portion of Ngspice computes steady-state harmonic and intermodulation
products for small input signal magnitudes. If signals of a single frequency are specified as the
input to the circuit, the complex values of the second and third harmonics are determined at
every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis
finds out the complex values of the circuit variables at the sum and difference of the input
frequencies, and at the difference of the smaller frequency from the second harmonic of the
larger frequency. Distortion analysis is supported for the following nonlinear devices:

¢ Diodes (DIO),
e BIT,

JFET (level 1),

MOSFETs (levels 1, 2, 3, 9, and BSIM1),

MESFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not change
state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the Fourier
of FFT statements and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice will calculate either the DC operating-point sensitivity or the AC small-signal sen-
sitivity of an output variable with respect to all circuit variables, including model parameters.
Ngspice calculates the difference in an output variable (either a node voltage or a branch current)
by perturbing each parameter of each device independently. Since the method is a numerical
approximation, the results may demonstrate second order effects in highly sensitive parameters,
or may fail to show very low but non-zero sensitivity. Further, since each variable is perturb
by a small fraction of its value, zero-valued parameters are not analyzed (this has the benefit of
reducing what is usually a very large amount of data).

1.2.7 Noise Analysis

The noise analysis portion of Ngspice gives the device-generated noise for a given circuit. When
provided with an input source and an output port, the analysis calculates the noise contributions
of each device, and each noise generator within the device, to the output port voltage. It also
calculates the equivalent input noise of the circuit, based on the output noise. This is done for
every frequency point in a specified range - the calculated value of the noise corresponds to
the spectral density of the circuit variable viewed as a stationary Gaussian stochastic process.
After calculating the spectral densities, noise analysis integrates these values over the speci-
fied frequency range to arrive at the total noise voltage and current over this frequency range.
The calculated values correspond to the variance of the circuit variables viewed as stationary
Gaussian processes.

40 CHAPTER 1. INTRODUCTION

1.2.8 Periodic Steady State Analysis

Experimental code.

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation is
based on a time domain shooting method that make use of transient analysis. As it is in early
development stage, PSS performs analysis only on autonomous circuits, meaning that it is able
to predict fundamental frequency and (harmonic) amplitude(s) for oscillators, VCOs, etc.. The
algorithm is based on a search of the minimum error vector defined as the difference of RHS
vectors between two occurrences of an estimated period. Convergence is reached when the
mean of this error vector decreases below a given threshold parameter. Results of PSS are the
basis of periodical large-signal analyses like PAC or PNoise.

1.3 Analysis at Different Temperatures

Temperature, in ngspice, is a property associated to the entire circuit, rather than an analysis op-
tion. Circuit temperature has a default (nominal) value of 27°C (300.15 K) that can be changed
using the TEMP option in an .option control line (see 15.1.1) or by the . TEMP line (see 2.11),
which has precedence over the .option TEMP line. All analyses are, thus, performed at circuit
temperature, and if you want to simulate circuit behavior at different temperatures you should
prepare a netlist for each temperature.

All input data for ngspice is assumed to have been measured at the circuit nominal temperature.
This value can further be overridden for any device that models temperature effects by speci-
fying the TNOM parameter on the .model itself. Individual instances may further override the
circuit temperature through the specification of TEMP and DTEMP parameters on the instance.
The two options are not independent even if you can specify both on the instance line, the TEMP
option overrides DTEMP. The algorithm to compute instance temperature is described below:

IF TEMP is specified THEN

instance_temperature = TEMP

ELSE IF

instance_temperature = circuit_temperature + DTEMP
END IF

Algorithm 1: Instance temperature computation

Temperature dependent support is provided for all devices except voltage and current sources
(either independent and controlled) and BSIM models. BSIM MOSFETs have an alternate
temperature dependency scheme that adjusts all of the model parameters before input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears explicitly
in the exponential terms of the BJT and diode model equations. In addition, saturation currents
have a built-in temperature dependence. The temperature dependence of the saturation current
in the BJT models is determined by:

XTI
Is (1) = Is (To) (%) exp (%) (1.1

where k is Boltzmann’s constant, g is the electronic charge, E, is the energy gap model pa-
rameter, and X7 is the saturation current temperature exponent (also a model parameter, and
usually equal to 3).

1.4. CONVERGENCE 41

The temperature dependence of forward and reverse beta is according to the formula:

XTB
B(Ti) = B(Ty) (?) (1.2)

0

where Ty and 77 are in degrees Kelvin, and X7 B is a user-supplied model parameter. Tempera-
ture effects on beta are carried out by appropriate adjustment to the values of Br, Isg, B, and
Isc (SPICE model parameters BE, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is determined by:

o (TN ((Eea(TiT0)
IS (T]) = IS (T()) <T0> exXp (Nk(Tl — T())) (13)

where N is the emission coefficient model parameter, and the other symbols have the same
meaning as above. Note that for Schottky barrier diodes, the value of the saturation current
temperature exponent, X7/, is usually 2. Temperature appears explicitly in the value of junction
potential, U (in Ngspice PHI), for all the device models.

The temperature dependence is determined by:

kT NN,
U(T)=—1 14
(T) p n(N,-(T)2> (1.4)

where k is Boltzmann’s constant, ¢ is the electronic charge, &, is the acceptor impurity den-
sity, Ny is the donor impurity density, NV; is the intrinsic carrier concentration, and Ej is the
energy gap. Temperature appears explicitly in the value of surface mobility, My(or Up), for the
MOSFET model.

The temperature dependence is determined by:

(1.5)

The effects of temperature on resistors, capacitor and inductors is modeled by the formula:

R(T) = R(Ty) [1+TC1 (T—To)+TC2(T—To)2] (1.6)

where 7 is the circuit temperature, T is the nominal temperature, and 7C; and TC; are the first
and second order temperature coefficients.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from circuit
description. The NR algorithm is interactive and terminates when both of the following condi-
tions hold:

42 CHAPTER 1. INTRODUCTION

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-
12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt),
whichever is larger.
1.4.1 Voltage convergence criterion

The algorithm has reached convergence when the difference between the last iteration k and the
current one (k+ 1)

V’(1k+l) . Vr(zk)

< RELTOLV,,,, + VNTOL, (1.7)
where

k+1
v£,+)’, %

(k)

n

) . (1.8)

Vitar = NAX (

The RELTOL (RELative TOLerance) parameter, which default value is 1073, specifies how small
the solution update must be, relative to the node voltage, to consider the solution to have conver-
ged. The VNTOL (absolute convergence) parameter, which has 1uV as default value, becomes
important when node voltages have near zero values. The relative parameter alone, in such
case, would need too strict tolerances, perhaps lower than computer round-off error, and thus
convergence would never be achieved. VNTOL forces the algorithm to consider as converged any
node whose solution update is lower than its value.

1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear bran-
ches in circuit elements. In semiconductor devices the functions defines currents through the
device and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed for the
last voltage and the linear approximation of the same current computed with the actual voltage

D)) .
branch ~— ‘branch < RELTOL Wrax T ABSTOL, (1.9)
where
.) ()
Lorye, = MaX <lbranch’ lbranch) : (110)

In the two expressions above, the ip,q,.;, indicates the linear approximation of the current.

1.4. CONVERGENCE 43

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases it fails
to converge to a solution. When this failure occurs, the program terminates the job. Failure
to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive
feedback probably will not converge in the dc analysis unless the OFF option is used for some
of the devices in the feedback path, .nodeset control line is used to force the circuit to converge
to the desired state.

44

CHAPTER 1. INTRODUCTION

Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which define
the model parameters and the run controls. All lines are assembled in an input file to be read by
ngspice. Two lines are essential:

* The first line in the input file must be the title, which is the only comment line that does
not need any special character in the first place.

¢ The last line must be . end.

The order of the remaining lines is arbitrary (except, of course, that continuation lines must
immediately follow the line being continued). This feature in the ngspice input language da-
tes back to the punched card times where elements were written on separate cards (and cards
frequently fell off). Leading white spaces in a line are ignored, as well as empty lines.

The lines described in sections 2.1 to 2.12 are typically used in the core of the input file, outside
of a .control section (see 16.4.3). An exception is the .include includefile line (2.6)
that may be placed anywhere in the input file. The contents of includefile will be inserted
exactly in place of the .include line.

2.1.2 Circuit elements (device instances)
Each element in the circuit is a device instance specified by an instance line that contains:
¢ the element instance name,

¢ the circuit nodes to which the element is connected,

* and the values of the parameters that determine the electrical characteristics of the ele-
ment.

45

46

CHAPTER 2. CIRCUIT DESCRIPTION

The first letter of the element instance name specifies the element type. The format for the
ngspice element types is given in the following manual chapters. In the rest of the manual, the
strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings.

For example, a resistor instance name must begin with the letter R and can contain one or more
characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each
type of device are supplied in a following section 3. Table 2.1 lists the element types available
in ngspice, sorted by their first letter.

First letter Element description Comments, links
12
analog (12.2
A XSPICE code model digita% (12. 4))
mixed signal (12.3)
B Behavioral (arbitrary) source 5.1
C Capacitor 3.2.5
D Diode 7
E Voltage-controlled voltage source (VCVS) ngﬁ?ﬁigfé? 2’)
F Current-controlled current source (CCCs) linear (4.2.3)
G Voltage-controlled current source (VCCS) ng?fﬁ;éjrz(' 51)3’)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 9
K Coupled (Mutual) Inductors 3.2.11
L Inductor 3.2.9
11
M Metal oxide field effect transistor (MOSFET) BSIM3 (11.2.10)
BSIM4 (11.2.11)
N Numerical device for GSS 14.2
O Lossy transmission line 6.2
P Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 8
R Resistor 3.2.1
S Switch (voltage-controlled) 3.2.14
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3
A% Voltage source 4.1
\\% Switch (current-controlled) 3.2.14
X Subcircuit 243
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 10

Table 2.1: ngspice element types

2.1. GENERAL STRUCTURE AND CONVENTIONS 47

2.1.3 Some naming conventions

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left or
right parenthesis; extra spaces are ignored. A line may be continued by entering a ‘+’ (plus) in
column 1 of the following line; ngspice continues reading beginning with column 2. A name
field must begin with a letter (A through Z) and cannot contain any delimiters. A number field
may be an integer field (12, -44), a floating point field (3.14159), either an integer or floating
point number followed by an integer exponent (1e-14, 2.65e3), or either an integer or a floating
point number followed by one of the following scale factors:

| Suffix | Name | Factor |
T Tera 1012
G | Giga 10°
Meg | Mega 10°
K Kilo 10°
mil | Mil |254x107°
m | milli 1073
u micro 10~°
n nano 1077
p pico 10~ 12
f femto 10715

Table 2.2: Ngspice scale factors

Letters immediately following a number that are not scale factors are ignored, and letters im-
mediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent
the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note that
1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same number. Note that ‘M’
or ‘m’ denote ‘milli’, i.e. 1073. Suffix meg has to be used for 10°.

Nodes names may be arbitrary character strings and are case insensitive, if ngspice is used in
batch mode (16.4.1). If in interactive (16.4.2) or control (16.4.3) mode, node names may either
be plain numbers or arbitrary character strings, not starting with a number. The ground node
must be named ‘0’ (zero). For compatibility reason gnd is accepted as ground node, and will
internally be treated as a global node and be converted to ‘0°. Each circuit has to have a ground
node (gnd or 0)! Note the difference in ngspice where the nodes are treated as character strings
and not evaluated as numbers, thus ‘0’ and 00 are distinct nodes in ngspice but not in SPICE2.

Ngspice requires that the following topological constraints are satisfied:

* The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain
a cut-set of current sources and/or capacitors.

* Each node in the circuit must have a dc path to ground.
* Every node must have at least two connections except for transmission line nodes (to

permit unterminated transmission lines) and MOSFET substrate nodes (which have two
internal connections anyway).

48 CHAPTER 2. CIRCUIT DESCRIPTION

2.2 Basic lines

2.2.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT
* additional lines following

KA
w

Test of CAM cell
* additional lines following

oo
w

The title line must be the first in the input file. Its contents are printed verbatim as the heading
for each section of output.

As an alternative you may place a .TITLE <any title> line anywhere in your input deck.
The first line of your input deck will be overridden by the contents of this line following the
.TITLE statement.

.TITLE line example:

B S N S N M N P P M MK P P P MK K P P K K P R ORI MK A
HHHRATA AR TTARTTARTTARRTTATRRTRTRTRRRS

o
w

additional lines following

.TITLE Test of CAM cell
additional lines following

will internally be replaced by

Internal input deck:

Test of CAM cell
* additional lines following

oo
w

*TITLE Test of CAM cell
* additional lines following

2.2.2 .END Line

Examples:

.end

The .end line must always be the last in the input file. Note that the period is an integral part
of the name.

2.3. .MODEL DEVICE MODELS 49

2.2.3 Comments

General Form:
* <any comment >
Examples:

* RF=1K Gain should be 100
* Check open-loop gain and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines may
be placed anywhere in the circuit description.

2.2.4 End-of-line comments

General Form:

<any command> $ <any comment>

Examples:

RF2=1K $ Gain should be 100
Cl=10p $ Check open-loop gain and phase margin
.param nl=1 //new value

ngspice supports comments that begin with double characters ‘$ ’ (dollar plus space) or °//’.
For readability you should precede each comment character with a space. ngspice will accept
the single character ‘$’.

Please note that in .control sections the ‘;’ character means ‘continuation’ and can be used
to put more than one statement on a line.

2.3 .MODEL Device Models

General form:
.model mname type(pnamel=pvall pname2=pval2 ...)
Examples:

.model MOD1 npn (bf=50 is=1le-13 vbf=50)

50 CHAPTER 2. CIRCUIT DESCRIPTION

| Code | Model Type |
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model
SW Voltage controlled switch
CSW Current controlled switch

URC Uniform distributed RC model
LTRA Lossy transmission line model

D Diode model
NPN NPN BIJT model
PNP PNP BJT model
NIJF N-channel JFET model
PJF P-channel JFET model

NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model
VDMOS Power MOS model

Table 2.3: Ngspice model types

Most simple circuit elements typically require only a few parameter values. However, some de-
vices (semiconductor devices in particular) that are included in ngspice require many parameter
values. Often, many devices in a circuit are defined by the same set of device model parameters.
For these reasons, a set of device model parameters is defined on a separate .model line and
assigned a unique model name. The device element lines in ngspice then refer to the model
name.

For these more complex device types, each device element line contains the device name, the
nodes the device is connected to, and the device model name. In addition, other optional para-
meters may be specified for some devices: geometric factors and an initial condition (see the
following section on Transistors (8 to 11) and Diodes (7) for more details). mname in the above
is the model name, and type is one of the following fifteen types:

Parameter values are defined by appending the parameter name followed by an equal sign and
the parameter value. Model parameters that are not given a value are assigned the default values
given below for each model type. Models are listed in the section on each device along with
the description of device element lines. Model parameters and their default values are given in
Chapt. 31.

2.4 .SUBCKT Subcircuits

A subcircuit that consists of ngspice elements can be defined and referenced in a fashion similar
to device models. Subcircuits are the way ngspice implements hierarchical modeling, but this is
not entirely true because each subcircuit instance is flattened during parsing, and thus ngspice
is not a hierarchical simulator.

The subcircuit is defined in the input deck by a grouping of element cards delimited by the
.subckt and the .ends cards (or the keywords defined by the substart and subend options

2.4. .SUBCKT SUBCIRCUITS 51

(see 17.7)); the program then automatically inserts the defined group of elements wherever the
subcircuit is referenced. Instances of subcircuits within a larger circuit are defined through the
use of an instance card that begins with the letter ‘X’. A complete example of all three of these
cards follows:

Example:

o
w

The following is the instance card:

o
w

xdivl 10 7 O vdivide

* The following are the subcircuit definition cards:

o
w

.subckt vdivide 1 2 3
rl 1 2 10K

r2 2 3 5K

.ends

The above specifies a subcircuit with ports numbered ‘1°, ‘2’ and ‘3’:

* Resistor ‘R1’ is connected from port ‘1’ to port ‘2°, and has value 10 kOhms.

* Resistor ‘R2’ is connected from port ‘2’ to port ‘3’, and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port ‘1’ to be equated
to circuit node ‘10°, while port ‘2" will be equated to node “7° and port ‘3” will equated to node
‘0.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain other
subcircuits. An example of subcircuit usage is given in Chapt. 21.6.

24.1 .SUBCKT Line

General form:
. SUBCKT subnam N1 <N2 N3 ...>
Examples:

. SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a . SUBCKT line. subnam is the subcircuit name, and N1, N2,
.. are the external nodes, which cannot be zero. The group of element lines that immediately
follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the
.ENDS line (see below). Control lines may not appear within a subcircuit definition; however,
subcircuit definitions may contain anything else, including other subcircuit definitions, device
models, and subcircuit calls (see below). Note that any device models or subcircuit definitions
included as part of a subcircuit definition are strictly local (i.e., such models and definitions

52 CHAPTER 2. CIRCUIT DESCRIPTION

are not known outside the subcircuit definition). Also, any element nodes not included on the
. SUBCKT line are strictly local, with the exception of 0 (ground) that is always global. If you
use parameters, the . SUBCKT line will be extended (see 2.8.3).

2.4.2 .ENDS Line

General form:
.ENDS <SUBNAM>
Examples:

.ENDS OPANMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name, if
included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits
being defined are terminated. The name is needed only when nested subcircuit definitions are
being made.

2.4.3 Subcircuit Calls

General form:
XYYYYYYY N1 <N2 N3 ...> SUBNAM
Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter X,
followed by the circuit nodes to be used in expanding the subcircuit. If you use parameters, the
subcircuit call will be modified (see 2.8.3).

2.5 .GLOBAL
General form:

.GLOBAL nodename
Examples:

.GLOBAL gnd vcc

2.6. .INCLUDE 53

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks inde-
pendently from any circuit hierarchy. After parsing the circuit, these nodes are accessible from
top level.

2.6 .INCLUDE

General form:
.INCLUDE filename
Examples:

.INCLUDE /users/spice/common/bsim3-param.mod

Frequently, portions of circuit descriptions will be reused in several input files, particularly with
common models and subcircuits. In any ngspice input file, the . INCLUDE line may be used to
copy some other file as if that second file appeared in place of the .INCLUDE line in the original
file.

There is no restriction on the file name imposed by ngspice beyond those imposed by the local
operating system.

2.7 .LIB

General form:
.LIB filename libname
Examples:

.LIB /users/spice/common/mosfets.lib mosl

The .LIB statement allows to include library descriptions into the input file. Inside the *.lib
file a library libname will be selected. The statements of each library inside the *.1ib file are
enclosed in .LIB libname <...> .ENDL statements.

If the compatibility mode (16.13) is set to ’ps’ by set ngbehavior=ps (17.7) in spinit (16.5)
or .spiceinit (16.6), then a simplified syntax .LIB filename is available: a warning is issued
and filename is simply included as described in Chapt. 2.6.

2.8 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an enhancement
of the ngspice front-end that adds arithmetic functionality to the circuit description language.

54 CHAPTER 2. CIRCUIT DESCRIPTION

2.8.1 .param line

General form:
.param <ident> = <expr> <ident> = <expr>
Examples:

.param pippo=5

.param po=6 pp=7.8 pap={AGAUSS(pippo, 1, 1.67)}
.param pippp={pippo + pp}

.param p={pp}

.param pop='pp+p’

This line assigns numerical values to identifiers. More than one assignment per line is possible
using a separating space. Parameter identifier names must begin with an alphabetic character.
The other characters must be either alphabetic, a number, or ! # $ % [] _ as special cha-
racters. The variables time, temper, and hertz (see 5.1.1) are not valid identifier names. Other
restrictions on naming conventions apply as well, see 2.8.6.

The .param lines inside subcircuits are copied per call, like any other line. All assignments
are executed sequentially through the expanded circuit. Before its first use, a parameter name
must have been assigned a value. Expressions defining a parameter should be put within braces
{p+p2}, or alternatively within single quotes ’AGAUSS (pippo, 1, 1.67)’. An assignment
cannot be self-referential, something like .param pip = ’pip+3’ will not work.

The current ngspice version does not always need quotes or braces in expressions, especially
when spaces are used sparingly. However, it is recommended to do so, as the following exam-
ples demonstrate.

.param a = 123 * 3 b = sqrt(9) $ doesn’t work, a <= 123
.param a = 123 * 3’ b = sqrt(9) $ ok.

.param c = a + 123 $ won’t work

.param c = ’a + 123’ $ ok.

.param c = a+123 $ ok.

2.8.2 Brace expressions in circuit elements:

General form:
{ <expr> }

Examples:

These are allowed in .model lines and in device lines. A SPICE number is a floating point
number with an optional scaling suffix, immediately glued to the numeric tokens (see Chapt.
2.8.5). Brace expressions ({..}) cannot be used to parametrize node names or parts of names.

2.8. .PARAM PARAMETRIC NETLISTS 55

All identifiers used within an <expr> must have known values at the time when the line is
evaluated, else an error is flagged.

2.8.3 Subcircuit parameters

General form:
.subckt <identn> node node ... <ident>=<value> <ident>=<value>
Examples:

.subckt myfilter in out rval=100k cval=100nF

<identn> is the name of the subcircuit given by the user. node is an integer number or an
identifier, for one of the external nodes. The first <ident>=<value> introduces an optional
section of the line. Each <ident> is a formal parameter, and each <value> is either a SPICE
number or a brace expression. Inside the .subcktends context, each formal parameter
may be used like any identifier that was defined on a .param control line. The <value> parts
are supposed to be default values of the parameters. However, in the current version of , they
are not used and each invocation of the subcircuit must supply the _exact_ number of actual
parameters.

The syntax of a subcircuit call (invocation) is:

General form:
X<name> node node ... <identn> <ident>=<value> <ident>=<value>
Examples:

X1 input output myfilter rval=1k cval=1n

Here <name> is the symbolic name given to that instance of the subcircuit, <identn> is the
name of a subcircuit defined beforehand. node node ... is the list of actual nodes where the
subcircuit is connected. <value> is either a SPICE number or a brace expression { <expr> }
. The sequence of <value> items on the X line must exactly match the number and the order of
formal parameters of the subcircuit.

56 CHAPTER 2. CIRCUIT DESCRIPTION

Subcircuit example with parameters:

o
w

Param-example
.param amplitude= 1V

.subckt myfilter in out rval=100k cval=100nF
Ra in pl {2*rval}

Rb pl out {2*rval}

Cl p1 ©® {2*cval}

Ca in p2 {cval}

Cb p2 out {cval}

R1 p2 0 {rval}

.ends myfilter

X1 input output myfilter rval=1k cval=1n
V1 input O AC {amplitude}
.end

2.8.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The . param symbols
that are defined outside of any . subcktends section are global. Inside such a section, the
pertaining params: symbols and any .param assignments are considered local: they mask any
global identical names, until the .ends line is encountered. You cannot reassign to a global
number inside a . subckt, a local copy is created instead. Scope nesting works up to a level of
10. For example, if the main circuit calls A that has a formal parameter xx, A calls B that has a
param. xx, and B calls C that also has a formal param. xx, there will be three versions of ‘xx’
in the symbol table but only the most local one - belonging to C - is visible.

2.8.5 Syntax of expressions

<expr> (optional parts within [...])

An expression may be one of:

<atom> where <atom> is either a spice number or an identifier
<unary-operator> <atom>

<function-name> (<expr> [, <expr> ...])

<atom> <binary-operator> <expr>

(<expr>)

As expected, atoms, built-in function calls and stuff within parentheses are evaluated before
the other operators. The operators are evaluated following a list of precedence close to the one
of the C language. For equal precedence binary ops, evaluation goes left to right. Functions
operate on real values only!

2.8. .PARAM PARAMETRIC NETLISTS 57

| Operator | Alias | Precedence | Description |

- 1 unary -

! 1 unary not

i A 2 power, like pwr

: 3 multiply

/ 3 divide

% 3 modulo

\ 3 integer divide
+ 4 add

- 4 subtract
== 5 equality

I= <> 5 non-equal
<= 5 less or equal
>= 5 greater or equal
< 5 less than

> 5 greater than
&& 6 boolean and

[] 7 boolean or

c?x:y 8 ternary operator

The number zero is used to represent boolean False. Any other number represents boolean True.
The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

o
w

Logical operators

vlor 10 {1 || 0}
vliand 2 0 {1 && 0}
vlnot 3 0 {! 1%}
vimod 4 0 {5 % 3}
vlidiv 5 0 {5 \ 3}
vOnot 6 0 {! 0}
.control

op

print allv

.endc

.end

58 CHAPTER 2. CIRCUIT DESCRIPTION

| Built-in function \ Notes |
sqrt(x) y = sqrt(x)
sin(X), cos(x), tan(x)
sinh(x), cosh(x), tanh(x)
asin(x), acos(x), atan(x)
asinh(x), acosh(x), atanh(x)

arctan(x) atan(x), kept for compatibility
exp(x)
In(x), log(x)
abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0
floor(x) Nearest integer rounded towards -oo
ceil(x) Nearest integer rounded towards +oo
pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(x,y) pow(fabs(x), y)
min(X, y)
max(X, y)
sgn(x) 1.0 for x > 0, 0.0 for x == 0, -1.0 for x < 0
ternary_fen(x, y, z) X? y: z
gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma
agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar) nominal value plus relative variation (to nominal)
uniformly distributed between +/-rvar
aunif(nom, avar) nominal value plus absolute variation uniformly distributed
between +/-avar
limit(nom, avar) nominal value +/-avar, depending on random number in

[-1, I[being> Qor< ®

The scaling suffixes (any decorative alphanumeric string may follow):

] suffix \ value ‘

g 1e9
meg le6
k le3
m le-3
u le-6
n le-9
p le-12
f le-15

Note: there are intentional redundancies in expression syntax, e.g. XAy , x**y and pwr(x,y)
all have nearly the same result.

2.9. .FUNC 59

2.8.6 Reserved words

In addition to the above function names and to the verbose operators (not and or div mod
), other words are reserved and cannot be used as parameter names: or, defined, sqr, sqrt,
sin, cos, exp, 1n, log, logl®, arctan, abs, pwr, time, temper, hertz.

2.8.7 A word of caution on the three ngspice expression parsers

The historical parameter notation using & as the first character of a line as equivalence to
.param. is deprecated and will be removed in a coming release.

Confusion may arise in ngspice because of its multiple numerical expression features. The
.param lines and the brace expressions (see Chapt. 2.9) are evaluated in the front-end, that
is, just after the subcircuit expansion. (Technically, the X lines are kept as comments in the
expanded circuit so that the actual parameters can be correctly substituted). Therefore, after the
netlist expansion and before the internal data setup, all number attributes in the circuit are known
constants. However, there are circuit elements in Spice that accept arithmetic expressions not
evaluated at this point, but only later during circuit analysis. These are the arbitrary current
and voltage sources (B-sources, 5), as well as E- and G-sources and R-, L-, or C-devices.
The syntactic difference is that ‘compile-time’ expressions are within braces, but ‘run-time’
expressions have no braces. To make things more complicated, the back-end ngspice scripting
language accepts arithmetic/logic expressions that operate only on its own scalar or vector data
sets (17.2). Please see Chapt. 2.13.

It would be desirable to have the same expression syntax, operator and function set, and prece-
dence rules, for the three contexts mentioned above. In the current Numparam implementation,
that goal is not achieved.

29 .FUNC

This keyword defines a function. The syntax of the expression is the same as for a .param
(2.8.5).

General form:

. func <ident> { <expr> }
.func <ident> = { <expr> }

Examples:

.func icos(x) {cos(x) - 1}
.func f(x,y) {x*y}
. func foo(a,b) = {a + b}

. func will initiate a replacement operation. After reading the input files, and before parameters
are evaluated, all occurrences of the icos(x) function will be replaced by cos(x)-1. All
occurrences of f(x,y) will be replaced by x*y. Function statements may be nested to a depth
of t.b.d..

60 CHAPTER 2. CIRCUIT DESCRIPTION

2.10 .CSPARAM

Create a constant vector (see 17.8.2) from a parameter in plot (17.3) const.

General form:
.csparam <ident> = <expr>
Examples:

.param pippo=5

.param pp=6

.csparam pippp={pippo + pp}
.param p={pp}

.csparam pap='pp+p’

In the example shown, vectors pippp, and pap are added to the constants that already reside
in plot const, having length one and real values. These vectors are generated during circuit
parsing and thus cannot be changed later (same as with ordinary parameters). They may be used
in ngspice scripts and .control sections (see Chapt. 17).

The use of . csparam is still experimental and has to be tested. A simple usage is shown below.

* test csparam

.param TEMPS = 27

.csparam newt = {3*TEMPS}
.csparam mytemp = ’2 + TEMPS’
.control

echo $&newt $&mytemp

.endc

.end

211 .TEMP

Sets the circuit temperature in degrees Celsius.

General form:
.temp value
Examples:

.temp 27

This card overrides the circuit temperature given in an .option line (15.1.1).

2.12. .IF CONDITION-CONTROLLED NETLIST 61

2.12 .IF Condition-Controlled Netlist

A simple . IF-.ELSE(IF) block allows condition-controlling of the netlist. boolean expression
is any expression according to Chapt. 2.8.5 that evaluates parameters and returns a boolean 1

or 0. The netlist block in between the .ifendif statements may contain device instances or
.model cards that are selected according to the logic condition.

General form:

.if(boolean expression)
:éiseif(boolean expression)
_else
Lendif

Example 1:

* device instance in IF-ELSE block
.param ok=0 ok2=1

vli 101

R1 160 2

.1f (ok && o0k2)
R11 1 ® 2

.else

R11 1 0 0.5 $ <-- selected
.endif

Example 2:

* .model in IF-ELSE block
.param m@®=0 ml=1

M1 12 3 4 N1 W=1 L=0.5

Lif(m0==1)

.model N1 NMOS level=49 Version=3.1

.elseif(ml==1)

.model N1 NMOS level=49 Version=3.2.4 §$ <-- selected
.else

.model N1 NMOS level=49 Version=3.3.0

.endif

For now this is a very restricted version of an .IF-.ELSE(IF) block, so several netlist com-
ponents are currently not supported within the . IF-.ENDIF block: .SUBCKT, . INC, .LIB, and

62 CHAPTER 2. CIRCUIT DESCRIPTION

.PARAM. Nesting of .IF-.ELSE(IF) blocks is not possible. Only one .elseif is allowed per
block.

2.13 Parameters, functions, expressions, and command scripts

In ngspice there are several ways to describe functional dependencies. In fact there are three
independent function parsers, being active before, during, and after the simulation. So it might
be due to have a few words on their interdependence.

2.13.1 Parameters

Parameters (Chapt. 2.8.1) and functions, either defined within the .param statement or with
the . func statement (Chapt. 2.9) are evaluated before any simulation is started, that is during
the setup of the input and the circuit. Therefore these statements may not contain any simu-
lation output (voltage or current vectors), because it is simply not yet available. The syntax is
described in Chapt. 2.8.5. During the circuit setup all functions are evaluated, all parameters
are replaced by their resulting numerical values. Thus it will not be possible to get feedback
from a later stage (during or after simulation) to change any of the parameters.

2.13.2 Nonlinear sources

During the simulation, the B source (Chapt. 5) and their associated E and G sources, as well
as some devices (R, C, L) may contain expressions. These expressions may contain parameters
from above (evaluated immediately upon ngspice start up), numerical data, predefined functi-
ons, but also node voltages and branch currents resulting from the simulation. The source or
device values are continuously updated during the simulation. Therefore the sources are po-
werful tools to define non-linear behavior, you may even create new ‘devices’ by yourself.
Unfortunately the expression syntax (see Chapt. 5.1) and the predefined functions may deviate
from the ones for parameters listed in 2.8.1.

2.13.3 Control commands, Command scripts

Commands, as described in detail in Chapt. 17.5, may be used interactively, but also as a com-
mand script enclosed in .controlendc lines. The scripts may contain expressions
(see Chapt. 17.2). The expressions may work upon simulation output vectors (of node volta-
ges, branch currents), as well as upon predefined or user defined vectors and variables, and are
invoked after the simulation. Parameters from 2.8.1 defined by the .param statement are not
allowed in these expressions. However you may define such parameters with . csparam (2.10).
Again the expression syntax (see Chapt. 17.2) will deviate from the one for parameters or B
sources listed in 2.8.1 and 5.1.

If you want to use parameters from 2.8.1 inside your control script, you may use .csparam
(2.10) or apply a trick by defining a voltage source with the parameter as its value, and then
have it available as a vector (e.g. after a transient simulation) with a then constant output (the
parameter). A feedback from here back into parameters (2.13.1) is never possible. Also you

2.13. PARAMETERS, FUNCTIONS, EXPRESSIONS, AND COMMAND SCRIPTS 63

cannot access non-linear sources of the preceding simulation. However you may start a first
simulation inside your control script, then evaluate its output using expressions, change some of
the element or model parameters with the alter and altermod statements (see Chapt. 17.5.3)
and then automatically start a new simulation.

Expressions and scripting are powerful tools within ngspice, and we will enhance the examples
given in Chapt. 21 continuously to describe these features.

64

CHAPTER 2. CIRCUIT DESCRIPTION

Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (‘< >’) are optional. All indi-
cated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any
delimiter. Further, future implementations may require the punctuation as stated. A consis-
tent style adhering to the punctuation shown here makes the input easier to understand. With
respect to branch voltages and currents, ngspice uniformly uses the associated reference con-
vention (current flows in the direction of voltage drop).

3.1 General options and information

3.1.1 Paralleling devices with multiplier m

When it is needed to simulate several devices of the same kind in parallel, use the ‘m’ (parallel
multiplier) instance parameter available for the devices listed in Table 3.1. This multiplies the
value of the element’s matrix stamp with m’s value. The netlist below shows how to correctly
use the parallel multiplier:

Multiple device example:

dl 2 0 mydiode m=10

d01 1 ® mydiode
d®2 1 0 mydiode
d®3 1 0 mydiode
dd4 1 O mydiode
do05 1 0 mydiode
do6 1 O mydiode
d07 1 O mydiode
d®8 1 0 mydiode
dd9 1 0 mydiode
d1®0 1 ® mydiode

The d1 instance connected between nodes 2 and O is equivalent to the 10 parallel devices
d®1-d10 connected between nodes 1 and 0.

65

66 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

The following devices support the multiplier m:

’ First letter Element description ‘

Capacitor
Diode
Current-controlled current source (CCCs)
Voltage-controlled current source (VCCS)
Current source
Junction field effect transistor (JFET)
Inductor
Metal oxide field effect transistor (MOSFET)
Bipolar junction transistor (BJT)
Resistor
Subcircuit (for details see below)
Metal semiconductor field effect transistor (MESFET)

N| 4 B O Z | —|—~Qmgan

Table 3.1: ngspice elements supporting multiplier 'm’

When the X line (e.g. x1 a b subl m=5) contains the token m=value (as shown) or m=expression,
subcircuit invocation is done in a special way. If an instance line of the subcircuit sub1 contains

any of the elements shown in table 3.1, then these elements are instantiated with the additional
parameter m (in this example having the value 5). If such an element already has an m mul-
tiplier parameter, the element m is multiplied with the m derived from the X line. This works
recursively, meaning that if a subcircuit contains another subcircuit (a nested X line), then the
latter m parameter will be multiplied by the former one, and so on.

Example 1:

.param madd = 6
X1 a b subl m=5
.subckt subl al bl
Csl al bl C=5p m="madd-2’
.ends

In example 1, the capacitance between nodes a and b will be C = 5pF* (madd-2)*5 = 100pF.

Example 2:

.param madd = 4
X1 a b subl m=3
.subckt subl al bl
X2 al bl sub2 m='madd-2’
.ends
.subckt sub2 a2 b2
Cs2 a2 b2 3p m=2
.ends

In example 2, the capacitance between nodes a and b is C = 3pF*2*(madd-2)*3 = 36pF.

3.1. GENERAL OPTIONS AND INFORMATION 67

Using m may fail to correctly describe geometrical properties for real devices like MOS transis-
tors.

M1 d g s nmos W=0.3u L=0.18u m=20
is probably not be the same as
M1 d g s nmos W=6u L=0.18u

because the former may suffer from small width (or edge) effects, whereas the latter is simply
a wide transistor.

3.1.2 Instance and model parameters

The simple device example below consists of two lines: The device is defined on the instance
line, starting with Lload ...: The first letter determines the device type (an inductor in this
example). Following the device name are two nodes 1 and 2, then the inductance value lu
is set. The model name indl is a connection to the respective model line. Finally we have a
parameter on the instance line, together with its value dtemp=5. Parameters on an instance line
are called instance parameters.

The model line starts with the token .model, followed by the model name, the model type and
at leat one model parameter, here tc1=0.001. There are complex models with more than 100
model parameters.

Lload 1 2 1u indl dtemp=5
.MODEL indl L tcl1=0.001

Instance parameters are listed in each of the following device descriptions. Model parameters
sometimes are given below as well, for complex models like the BSIM transistor models, they
are available in the model makers documentation. Instance parameters may also be placed in
the .model line. Thus they are reckognized by each device instance referring to that model.
Their values may be overridden for a specific instance of a device by placing them additionally
onto its instance line.

3.1.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s. The
purpose is to cover larger geometry ranges (Width and Length) with higher accuracy then the
model built-in geometry formulas. Each size range described by the additional model parame-
ters LMIN, LMAX, WMIN and WMAX has its own model parameter set. These model cards
are defined by a number extension, like ‘nch.1’. NGSPICE has a algorithm to choose the right
model card by the requested W and L.

This is implemented for BSIM3 (11.2.10) and BSIM4 (11.2.11) models.

3.1.4 Initial conditions

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable state.

http://ngspice.sourceforge.net/literature.html

68 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

If a device is specified OFF, the dc operating point is determined with the terminal voltages
for that device set to zero. After convergence is obtained, the program continues to iterate to
obtain the exact value for the terminal voltages. If a circuit has more than one dc stable state,
the OFF option can be used to force the solution to correspond to a desired state. If a device
is specified OFF when in reality the device is conducting, the program still obtains the correct
solution (assuming the solutions converge) but more iterations are required since the program
must independently converge to two separate solutions.

The .NODESET control line (see Chapt. 15.2.1) serves a similar purpose as the OFF option. The
.NODESET option is easier to apply and is the preferred means to aid convergence. The second
form of initial conditions are specified for use with the transient analysis. These are true ‘initial
conditions’ as opposed to the convergence aids above. See the description of the .IC control
line (Chapt. 15.2.2) and the .TRAN control line (Chapt. 15.3.9) for a detailed explanation of
initial conditions.

3.2 Elementary Devices

3.2.1 Resistors

General form:

RXXXXXXX n+ n- <resistance]|r=>value <ac=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val> <tc2=val>
+ <noisy=0]|1>

Examples:

R1 1 2 100

RC1 12 17 1K

R2 5 7 1K ac=2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semicon-
ductor resistors. Semiconductor resistors in ngspice means: resistors described by geometrical
parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be positive or
negative! but not zero.

Simulating small valued resistors: If you need to simulate very small resis-
tors (0.001 Ohm or less), you should use CCVS (transresistance), it is less
efficient but improves overall numerical accuracy. Think about that a small
resistance is a large conductance.

Ngspice can assign a resistor instance a different value for AC analysis, specified using the
ac keyword. This value must not be zero as described above. The AC resistance is used in

!'A negative resistor modeling an active element can cause convergence problems, please avoid it.

3.2. ELEMENTARY DEVICES 69

AC analysis only (neither Pole-Zero nor Noise). If you do not specify the ac parameter, it is
defaulted to value.

Ngspice calculates the nominal resistance as

R — VALUE scale
nom - m
(3.1
Racnom = ac ;iale.

If you want to simulate temperature dependence of a resistor, you need to specify its temperature
coefficients, using a .model line or as instance parameters, like in the examples below:

Examples:

RE1 1 2 800 newres dtemp=5
.MODEL newres R tcl=0.001

RE2 a b 1.4k tcl=2m tc2=1.4u
RE3 nl n2 1Meg tce=700m

The temperature coefficients tcl and tc2 describe a quadratic temperature dependence (see
equation 1.6) of the resistance. If given in the instance line (the R... line) their values will
override the tcl and tc2 of the .model line (3.2.3). Ngspice has an additional temperature
model equation 3.2 parametrized by tce given in model or instance line. If all parameters are
given (quadratic and exponential) the exponential temperature model is chosen.

R(T) =R (Ty) 1.01TCE'(T*T0>] (3.2)

where T is the circuit temperature, 7 is the nominal temperature, and TCE is the exponential
temperature coefficients.

Instance temperature is useful even if resistance does not vary with it, since the thermal noise
generated by a resistor depends on its absolute temperature. Resistors in ngspice generates two
different noises: thermal and flicker. While thermal noise is always generated in the resistor, to
add a flicker noise? source you have to add a .model card defining the flicker noise parameters.
It is possible to simulate resistors that do not generate any kind of noise using the noisy (or
noise) keyword and assigning zero to it, as in the following example:

Example:

Rmd 134 57 1.5k noisy=0

If you are interested in temperature effects or noise equations, read the next section on semi-
conductor resistors.

2Flicker noise can be used to model carbon resistors.

70 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.2.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n- <value> <mname> <l=length> <w=width>
+ <temp=val> <dtemp=val> <m=val> <ac=val> <scale=val>
+ <noisy = 01>

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1lu

This is the more general form of the resistor presented before (3.2.1) and allows the modeling of
temperature effects and for the calculation of the actual resistance value from strictly geometric
information and the specifications of the process. If value is specified, it overrides the geo-
metric information and defines the resistance. If mname is specified, then the resistance may be
calculated from the process information in the model mname and the given length and width.
If value is not specified, then mname and 1length must be specified. If width is not specified,
then it is taken from the default width given in the model.

The (optional) temp value is the temperature at which this device is to operate, and overrides
the temperature specification on the .option control line and the value specified in dtemp.

3.2.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be calcu-
lated from geometric information and to be corrected for temperature. The parameters available
are:

’ Name \ Parameter \ Units \ Default \ Example ‘
TC1 first order temperature coeff. Q/oc 0.0 -
TC2 second order temperature coeff. Q/oc? 0.0 -
RSH sheet resistance Q/0 - 50

DEFW default width m le-6 2e-6
NARROW narrowing due to side etching m 0.0 le-7
SHORT shortening due to side etching m 0.0 le-7
TNOM parameter measurement temperature °C 27 50
KF flicker noise coefficient 0.0 le-25
AF flicker noise exponent 0.0 1.0
WF flicker noise width exponent 1.0
LF flicker noise length exponent 1.0
EF flicker noise frequency exponent 1.0
R (RES) | default value if element value not given Q - 1000

The sheet resistance is used with the narrowing parameter and 1 and w from the resistor device
to determine the nominal resistance by the formula:

3.2. ELEMENTARY DEVICES 71

I —SHORT
w —NARROW

Ryuom = 1sh (33)

DEFW is used to supply a default value for w if one is not specified for the device. If either rsh
or 1 is not specified, then the standard default resistance value of 1 mOhm is used. TNOM is used
to override the circuit-wide value given on the .options control line where the parameters
of this model have been measured at a different temperature. After the nominal resistance is
calculated, it is adjusted for temperature by the formula:

R(T) = R(TNOM) (1 +TCi(T —TNOM) +TC,(T — TNOM)2> (3.4)

where R(TNOM) = R, 1o |Racnom- In the above formula, ‘7’ represents the instance temperature,
which can be explicitly set using the temp keyword or calculated using the circuit temperature
and dtemp, if present. If both temp and dtemp are specified, the latter is ignored. Ngspice
improves SPICE’s resistors noise model, adding flicker noise (1/f) to it and the noisy (or
noise) keyword to simulate noiseless resistors. The thermal noise in resistors is modeled
according to the equation:

it =——Af (3.5)

where ‘k’ is the Boltzmann’s constant, and ‘7T’ the instance temperature.

Flicker noise model is:

A
,” KFIRF

IR fn WWFE [LF (EF Af (3.6)

A small list of sheet resistances (in €/0) for conductors is shown below. The table represents
typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI Design
2nd Edition, Addison Wesley.

’ Material \ Min. \ Typ. \ Max. ‘

Inter-metal (metall - metal2) | 0.005 | 0.007 | 0.1

Top-metal (metal3) 0.003 | 0.004 | 0.05
Polysilicon (poly) 15 20 30
Silicide 2 3 6

Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 | 2000 | 5000

72 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

3.2.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n- R = ’expression’ <tcl=value> <tc2=value>
RXXXXXXX n+ n- ’'expression’ <tcl=value> <tc2=value>

Examples:

Rl rr 0 r = V(rr) < {Vt} ? {RO} : {2*RO}’ tcl=2e-03 tc2=3.3e-06
R2 r2 rr r = {5k + 50*TEMPER}

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.
5.1. It may contain parameters (2.8.1) and the special variables time, temper, and hertz
(5.1.2). An example file is given below. Noise may be evaluated as white noise, depending on
resistance, temperature and tcs.

Example input file for non-linear resistor:

Non-linear resistor

.param RO=1k Vi=1 Vt=0.5

* resistor depending on control voltage V(rr)
Rl rr 0 r = ’V(rr) < {Vt} ? {RO} : {2*RO}’
* control voltage

Vi rr 0 PWL(CO O 100u {Vi})

.control

unset askquit

tran 100n 100u uic

plot i(V1)

.endc

.end

3.2.5 Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <m=val> <scale=val> <temp=val>
+ <dtemp=val> <tcl=val> <tc2=val> <ic=init_condition>

Examples:

CBYP 13 0 1UF
COSC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the original

3.2. ELEMENTARY DEVICES 73

SPICE3 ‘convention’, capacitors specified by their geometrical or physical characteristics are
called ‘semiconductor capacitors’ and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and value
is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model line,
as in the example below:

Cl 15 5 cstd
C2 2 7 cstd
.model cstd C cap=3n

Both capacitors have a capacitance of 3nF.

If you want to simulate temperature dependence of a capacitor, you need to specify its tempe-
rature coefficients, using a .model line, like in the example below:

CEB 1 2 1lu capl dtemp=5
.MODEL capl C tcl1=0.001

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in Volts).
Note that the initial conditions (if any) apply only if the uic option is specified on the .tran
control line.

Ngspice calculates the nominal capacitance as described below:
Chom = value - scale - m 3.7
The temperature coefficients tcl and tc2 describe a quadratic temperature dependence (see

equation17.12) of the capacitance. If given in the instance line (the C... line) their values will
override the tcl and tc2 of the .model line (3.2.7).

3.2.6 Semiconductor Capacitors

General form:

CXXXXXXX n+ n- <value> <mname> <l=1length> <w=width> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <ic=init_condition>

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1lu

This is the more general form of the Capacitor presented in section (3.2.5), and allows for the
calculation of the actual capacitance value from strictly geometric information and the speci-
fications of the process. If value is specified, it defines the capacitance and both process and

74 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

geometrical information are discarded. If value is not specified, the capacitance is calcula-
ted from information contained model mname and the given length and width (1, w keywords,
respectively).

It is possible to specify mname only, without geometrical dimensions and set the capacitance in
the .model line (3.2.5).

3.2.7 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capacitance
from strictly geometric information.

’ Name \ Parameter \ Units \ Default \ Example ‘
CAP model capacitance F 0.0 le-6
cl junction bottom capacitance F[m? - Se-5
CISW junction sidewall capacitance F/m - 2e-11
DEFW default device width m le-6 2e-6
DEFL default device length m 0.0 le-6
’ NARROW \ narrowing due to side etching \ m \ 0.0 \ le-7 ‘
| SHORT | shorteningduetosideetching | m | 00 | le7 |
| TC1 | firstorder temperature coeff. | F/oc | 0.0 | 0.001 |
’ TC2 \ second order temperature coeff. \ Fleoc? \ 0.0 \ 0.0001 ‘
’ TNOM \ parameter measurement temperature \ °C \ 27 \ 50 ‘
’ DI \ relative dielectric constant \ F/m \ - \ 1 ‘
| THICK | insulator thickness | m | 00 | 1e9 |
The capacitor has a capacitance computed as:
If value is specified on the instance line then
Chom = value - scale - m (3.8)
If model capacitance is specified then
Chom = CAP -scale-m 3.9

If neither value nor CAP are specified, then geometrical and physical parameters are take into
account:

Co = CJ(I — SHORT)(w — NARROW) + 2CISW (I — SHORT + w — NARROW) (3.10)

CJ can be explicitly given on the .model line or calculated by physical parameters. When CJ
1s not given, is calculated as:

If THICK is not zero:

3.2. ELEMENTARY DEVICES 75

CJ = 218 if Dlis specified,

(3.11)

_ &sio, .
Cl = THICK otherwise.

If the relative dielectric constant is not specified the one for SiO2 is used. The values of the
constants are: & = 8.854214871e — 12% and &g;0, = 3.4531479969¢ — 11%. The nominal
capacitance is then computed as:

Chom = Cpscalem (3.12)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:
C(T) = C(TNOM) (1 +TCy(T — TNOM) + TCo(T — TNOM)2> (3.13)

where C(TNOM) = Cpp:-

In the above formula, ‘7" represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.2.8 Capacitors, dependent on expressions (behavioral capacitor)

General form:

CXXXXXXX n+ n- C = ’expression’ <tcl=value> <tc2=value>
CXXXXXXX n+ n- ’expression’ <tcl=value> <tc2=value>

Examples:
Cl cc ® ¢ = ’V(cc) < {Vt} ? {C1} : {Ch}’ tcl=-1e-03 tc2=1.3e-05

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.8.1) and the special variables time, temper, and hertz (5.1.2).

76

CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Behavioral Capacitor

.param Cl=5n Ch=1ln Vt=1m I1=100n

.ic v(cc) = 0O v(cc2) =0

* capacitor depending on control voltage V(cc)
Cl cc ® ¢ = ’V(cc) < {Vt} ? {Cl1l} : {Ch}’

*Cl cc 0 ¢ ={Ch}

I1 0 1 {I1}

Exxx nl-copy n2 n2 cc2 1

Cxxx nl-copy n2 1

Bxxx c¢c2 n2 I = (V(cc2) < {Vt} ? {Cl} : {Ch})’ * i(ExxX)
I2 n2 22 {Il}

vh2 n2 O DC 0

* measure charge by integrating current
aintl %id(l cc) 2 time_count

aint2 %id(22 cc2) 3 time_count

.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1el2 out_upper_limit=1el2
+ limit_range=1e-9 out_ic=0.0)

.control

unset askquit

tran 100n 100u

plot v(2)

plot v(cc) v(cc2)

.endc

.end

3.2.9 Inductors

General form:

LYYYYYYY n+ n- <value> <mname> <nt=val> <m=val>
+ <scale=val> <temp=val> <dtemp=val> <tcl=val>
+ <tc2=val> <ic=init_condition>

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC=15.7MA

The inductor device implemented into ngspice has many enhancements over the original one.n+
and n- are the positive and negative element nodes, respectively. value is the inductance in
Henry. Inductance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

3.2. ELEMENTARY DEVICES 77

L1 15 5 indmodl
L2 2 7 indmodl
.model indmodl L ind=3n

Both inductors have an inductance of 3nH.

The nt is used in conjunction with a .model line, and is used to specify the number of turns
of the inductor. If you want to simulate temperature dependence of an inductor, you need to
specify its temperature coefficients, using a .model line, like in the example below:

Lload 1 2 1u indl dtemp=5
.MODEL indl L tc1=0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in Amps) that
flows from n+, through the inductor, to n-. Note that the initial conditions (if any) apply only if
the UIC option is specified on the . tran analysis line.

Ngspice calculates the nominal inductance as described below:

L — value scale (3.14)
m

3.2.10 Inductor model

The inductor model contains physical and geometrical information that may be used to compute
the inductance of some common topologies like solenoids and toroids, wound in air or other
material with constant magnetic permeability.

| Name | Parameter | Units | Default | Example |
IND model inductance H 0.0 le-3
CSECT Cross section m? 0.0 le-3
LENGTH length m 0.0 le-2
TClI first order temperature coeff. Hfoc 0.0 0.001
TC2 second order temperature coeff. Hjfoc? 0.0 0.0001
TNOM | parameter measurement temperature | °C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability H/m 0.0 -

The inductor has an inductance computed as:

If value is specified on the instance line then

L, — value scale (3.15)
m
If model inductance is specified then
IND scal
Lnom = ——— (3.16)

m

78 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

If neither value nor IND are specified, then geometrical and physical parameters are take into
account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model parameter):

If LENGTH is not zero:

LENGTH
J—! NT2 CSECT
nom = "~ TENGTH _

(3.17)

2
Lyom = MUBIT CECT 3¢ MU is specified,
otherwise.

with tg = 1.25663706143592%. After the nominal inductance is calculated, it is adjusted for
temperature by the formula

L(T) = L(TNOM) (1+ TCy (T — TNOM) + TCo(T — TNOM)Z) , (3.18)

where L(TNOM) = L. In the above formula, ‘T’ represents the instance temperature, which
can be explicitly set using the temp keyword or calculated using the circuit temperature and
dtemp, if present.

3.2.11 Coupled (Mutual) Inductors

General form:
KXXXXXXX LYYYYYYY LZZZZZZ7ZZ value
Examples:

K43 LAA LBB 0.999
KXFRMR L1 L2 0.87

LYYYYYYY and LZZZ7777 are the names of the two coupled inductors, and value is the
coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using the
‘dot’ convention, place a ‘dot’ on the first node of each inductor.

3.2.12 Inductors, dependent on expressions (behavioral inductor)

General form:

LXXXXXXX n+ n- L = ’expression’ <tcl=value> <tc2=value>
LXXXXXXX n+ n- ’'expression’ <tcl=value> <tc2=value>

Examples:

L1 12 111 L = ’i(Vm) < {It} ? {L1} : {Lh}’ tcl=-4e-03 tc2=6e-05

3.2. ELEMENTARY DEVICES 79

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt. 5.1.
It may contain parameters (2.8.1) and the special variables time, temper, and hertz (5.1.2).

Example input file:

Variable inductor

.param L1=0.5m Lh=5m It=50u Vi=2m
.ic v(int21) = 0

* variable inductor depending on control current i(Vm)
L1 12 111 L = ’i(Vm) < {It} ? {L1} : {Lh}’

* measure current through inductor

vm 111 0 dc ©

* voltage on inductor

Vi 12 0 {Vvi}

fixed inductor
L3 33 331 {L1}
* measure current through inductor
vm33 331 0 dc ©
* voltage on inductor
V3 33 0 {Vi}

* non linear inductor (discrete setup)

F21 int21 0 B21 -1

L21 int21 0 1

B21 n1 n2 V = (i(Vm21) < {It} ? {L1} : {Lh})’ * v(int21)
* measure current through inductor

vm21l n2 O dc 0

V21 nl1 0 {Vi}

.control

unset askquit

tran 1lu 100u uic
plot i(Vm) i(vm33)
plot i(vm21) i(vm33)
plot i(vm)-i(vm21)
.endc

.end

3.2.13 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capaci-
tor and inductor models, respectively. These models are not the standard ones supplied with
SPICE3, but are in fact code models that can be substituted for the SPICE models when rea-
listic initial conditions are required. For details please refer to Chapter 12. A XSPICE deck
example using these models is shown below:

80 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

* This circuit contains a capacitor and an inductor with
* initial conditions on them. Each of the components

has a parallel resistor so that an exponential decay

of the initial condition occurs with a time constant of
1 second.

al 1 0 cap
.model cap capacitor (c=1000uf ic=1)
rl 10 1k

a2 2 0 ind
.model ind inductor (1=1H ic=1)
r2201.0

.control

tran 0.01 3
plot v(1) v(2)
.endc

.end

3.2.14 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model SW)
and a current controlled switch (type WXXXXXXX, model CSW). A switching hysteresis may
be defined, as well as on- and off-resistances (0 < R < o).

General form:

SXXXXXXX N+ N- NC+ NC- MODEL <ON><OFF>
WYYYYYYY N+ N- VNAM MODEL <ON><OFF>

Examples:

sl 1 2 3 4 switchl ON

s2 56 3 0 sm2 off

Switchl 1 2 10 0 smodell

wl 1 2 vclock switchmodl

W2 3 0 vramp sml ON

wreset 5 6 vclck lossyswitch OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled switch,
nodes 3 and 4 are the positive and negative controlling nodes respectively. For the current
controlled switch, the controlling current is that through the specified voltage source. The
direction of positive controlling current flow is from the positive node, through the source, to
the negative node.

3.2. ELEMENTARY DEVICES 81

The instance parameters ON or OFF are required, when the controlling voltage (current) starts
inside the range of the hysteresis loop (different outputs during forward vs. backward voltage
or current ramp). Then ON or OFF determine the initial state of the switch.

3.2.15 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is not
quite ideal, in that the resistance can not change from O to infinity, but must always have a finite
positive value. By proper selection of the on and off resistances, they can be effectively zero
and infinity in comparison to other circuit elements. The parameters available are:

| Name | Parameter | Units | Default | Switch model |
VT | threshold voltage \Y% 0.0 SW
IT threshold current A 0.0 CSwW
VH | hysteresis voltage \Y 0.0 SW
IH | hysteresis current | A 0.0 CSW
RON on resistance Q 1.0 SW,CSW
ROFF off resistance Q 1.0e+12 (*) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .OPTIONS control line
(15.1.2) for a description of GMIN, its default value results in an off-resistance of 1.0e+12
ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinui-
ties to occur in the circuit node voltages. A rapid change such as that associated with a switch
changing state can cause numerical round-off or tolerance problems leading to erroneous results
or time step difficulties. The user of switches can improve the situation by taking the following
steps:

* First, it is wise to set the ideal switch impedance just high or low enough to be negli-
gible with respect to other circuit elements. Using switch impedances that are close to
‘ideal’ in all cases aggravates the problem of discontinuities mentioned above. Of course,
when modeling real devices such as MOSFETS, the on resistance should be adjusted to a
realistic level depending on the size of the device being modeled.

 If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON >
le+12), then the tolerance on errors allowed during transient analysis should be decreased
by using the .OPTIONS control line and specifying TRTOL to be less than the default value
of 7.0.

* When switches are placed around capacitors, then the option CHGTOL should also be re-
duced. Suggested values for these two options are 1.0 and le-16 respectively. These
changes inform ngspice to be more careful around the switch points so that no errors are
made due to the rapid change in the circuit.

82 CHAPTER 3. CIRCUIT ELEMENTS AND MODELS

Example input file:

Switch test

.tran 2us 5ms

*switch control voltage

vl 1 0 DC 0.0 PWL(O® O 2e-3 2 4e-3 0)

*switch control voltage starting inside hysteresis window
*please note influence of instance parameters ON, OFF

v2 2 0 DC 0.0 PWL(O 0.9 2e-3 2 4e-3 0.4)

*switch control current

i3 3 0 DC 0.0 PWL(O® O 2e-3 2m 4e-3 0) $ <--- switch control current
*load voltage

vd 4 0 DC 2.0

*input load for current source i3

r3 3 33 10k

vim3 33 0 dc 0 $§ <--- measure the current

* ouput load resistors

ri® 4 10 10k

r20 4 20 10k

r30® 4 30 10k

r40 4 40 10k

sl 10 ® 1 0 switchl OFF
s2 20 ® 2 0 switchl OFF
s3 30 0 2 0 switchl ON

.model switchl sw vt=1 vh=0.2 ron=1 roff=10k

wl 40 0 vm3 wswitchl off
.model wswitchl csw it=1m ih=0.2m ron=1 roff=10k

.control

run

plot v(1) v(10)

plot v(10) vs v(1) $ <-- get hysteresis loop
plot v(2) v(20) § <--- different initial values
plot v(20) vs v(2) $§ <-- get hysteresis loop
plot v(2) v(30) $§ <--- different initial values
plot v(30) vs v(2) $§ <-- get hysteresis loop
plot v(40) vs vm3#branch $§ <--- current controlled switch hysteresis
.endc

.end

Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current

General form:

VXXXXXXX N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
IYYYYYYY N+ N- <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6

VIN 13 2 0.001 AC 1 SIN(CO® 1 1MEG)

ISRC 23 21 AC 0.333 45.0 SFFM(O® 1 10K 5 1K)
VMEAS 12 9

VCARRIER 1 ® DISTOF1 6.1 -90.0

VMODULATOR 2 ® DISTOF2 0.01

IIN1 1 5 AC 1 DISTOF1 DISTOF2 0.001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need not
be grounded. Positive current is assumed to flow from the positive node, through the source, to
the negative node. A current source of positive value forces current to flow out of the n+ node,
through the source, and into the n- node. Voltage sources, in addition to being used for circuit
excitation, are the ‘ammeters’ for ngspice, that is, zero valued voltage sources may be inserted
into the circuit for the purpose of measuring current. They of course have no effect on circuit
operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero both for
dc and transient analyses, this value may be omitted. If the source value is time-invariant (e.g.,
a power supply), then the value may optionally be preceded by the letters DC.

ACMAG is the ac magnitude and ACPHASE is the ac phase. The source is set to this value in the
ac analysis. If ACMAG is omitted following the keyword AC, a value of unity is assumed. If
ACPHASE is omitted, a value of zero is assumed. If the source is not an ac small-signal input,
the keyword AC and the ac values are omitted.

83

84 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion
inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line).
The keywords may be followed by an optional magnitude and phase. The default values of the
magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If a
source is assigned a time-dependent value, the time-zero value is used for dc analysis. There
are nine independent source functions:

* pulse,

* exponential,

e sinusoidal,

* piece-wise linear,

* single-frequency FM

« AM

e transient noise

* random voltages or currents

* and external data (only with ngspice shared library).

If parameters other than source values are omitted or set to zero, the default values shown are
assumed. TSTEP is the printing increment and TSTOP is the final time — see the . TRAN control
line for an explanation.

4.1.1 Pulse

General form (the PHASE parameter is only possible when XSPICE is enabled):
PULSE(V1 V2 TD TR TF PW PER PHASE)
Examples:

VIN 3 0 PULSE(-1 1 2NS 2NS 2NS 50NS 100NS)

Name Parameter \ Default Value | Units
Vi Initial value - V,A
V2 Pulsed value - V,A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec

PER Period TSTOP sec
PHASE Phase 0.0 degrees

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 85

A single pulse, without phase offset, is described by the following table:

Time | Value |
0 A\
TD Vi
TD+TR V2

TD+TR+PW V2
TD+TR+PW+TF | VI
TSTOP V1

Intermediate points are determined by linear interpolation.

4.1.2 Sinusoidal

General form (the PHASE parameter is only possible when XSPICE is enabled):

SIN(VO VA FREQ TD THETA PHASE)

Examples:

VIN 3 0 SIN(C® 1 100MEG INS 1E10)

| Name | Parameter | Default Value | Units |
VO Offset - V,A
VA Amplitude - V,A
FREQ Frequency l/TsTop Hz
TD Delay 0.0 sec
THETA | Damping factor 0.0 1/sec
PHASE Phase 0.0 degrees

The shape of the waveform is described by the following formula:

Vi) = VO if0<t<TD
| VO+VAe (-TDITHETA Gy (2. FREQ - (t — TD) + PHASE) if TD <t < TSTOP.
(4.1)

4.1.3 Exponential

General Form:
EXP(V1l V2 TD1 TAUl1l TD2 TAU2)
Examples:

VIN 3 0 EXP(-4 -1 2NS 30NS 60NS 40NS)

86 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

| Name | Parameter Default Value | Units |
Vi Initial value - V,A
V2 pulsed value - V,A
TD1 rise delay time 0.0 sec
TAUI1 | rise time constant TSTEP sec
TD2 fall delay time | TDI+TSTEP | sec
TAU?2 | fall time constant TSTEP sec

The shape of the waveform is described by the following formula:
LetV21 =V2-V1,V12=V1-V2:

Vi if0<t<TDI,
(t—=TD1)

V()= Vi+val (1 i) ifTD1 <1 <TD2, 4.2)
V1+V2l (1 —e*i“izﬁ”) 1VI2 (1 —e*iaiffz”) if TD2 <t < TSTOP.

4.1.4 Piece-Wise Linear

General Form:
PWL(T1 V1 <T2 V2 T3 V3 T4 V4 ...>) <r=value> <td=value>
Examples:

VCLOCK 7 5 PWL(® -7 1ONS -7 11NS -3 17NS -3 18NS -7 50NS -7)
+ r=0 td=15NS

Each pair of values (7;, V;) specifies that the value of the source is V; (in Volts or Amps) at
time = 7;. The value of the source at intermediate values of time is determined by using linear
interpolation on the input values. The parameter r determines a repeat time point. If r is not
given, the whole sequence of values (7;, V;) is issued once, then the output stays at its final
value. If r = 0, the whole sequence from time O to time 7# is repeated forever. If r = 10ns, the
sequence between 10ns and 50ns is repeated forever. the r value has to be one of the time points
T1 to Tn of the PWL sequence. If #d is given, the whole PWL sequence is delayed by the value
of 1d.

4.1.5 Single-Frequency FM

General Form (the PHASE parameters are only possible when XSPICE is enabled):
SFFM(VO VA FC MDI FS PHASEC PHASES)

Examples:

V1l 12 ® SFFM(® 1M 20K 5 1K)

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT

| Name Parameter | Default value | Units |
VO Offset - V,A
VA Amplitude - V,A
FC Carrier frequency 1/TsTop Hz
MDI Modulation index -
FS Signal frequency 1/TsTop Hz
PHASEC carrier phase 0 degrees
PHASES signal phase 0 degrees

The shape of the waveform is described by the following equation:

V(t) = Vp+Vysin(21- FC -1+ MDI sin (27 - FS -t + PHASES) + PHASEC)

4.1.6 Amplitude modulated source (AM)

General Form (the PHASE parameter is only possible when XSPICE is enabled):
AM(VA VO MF FC TD PHASES)
Examples:

Vil 12 0 AM(0.5 1 20K 5MEG 1m)

| Name | Parameter | Default value | Units
VA Amplitude - V,A
VO Offset - V,A
MF Modulating frequency - Hz
FC Carrier frequency 1/TsTop Hz
TD Signal delay - s
PHASES Phase 0.0 degrees

The shape of the waveform is described by the following equation:

V(t) = V4 (VO +sin (27 - MF -t) + PHASES) sin (27 - FC - t + PHASES)

87

4.3)

4.4)

88 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.7 Transient noise source

General Form:

TRNOISE(NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)

Examples:

VNoiw 1 ® DC ® TRNOISE(20n 0.5n 0 0) $ white
VNoilof 1 ® DC ® TRNOISE(® 10p 1.1 12p) $ 1/f
VNoiwlof 1 ® DC ® TRNOISE(20 10p 1.1 12p) $ white and 1/f
IALL 10 0 DC ® trnoise(lm 1u 1.0 0.1m 15m 22u 50u)
$ white, 1/f, RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injection
and analysis. See Chapt. 15.3.10 for a detailed description. NA is the Gaussian noise rms
voltage amplitude, NT is the time between sample values (breakpoints will be enforced on mul-
tiples of this value). NALPHA (exponent to the frequency dependency), NAMP (rms voltage or
current amplitude) are the parameters for 1/f noise, RTSAM the random telegraph signal ampli-
tude, RTSCAPT the mean of the exponential distribution of the trap capture time, and RTSEMT
its emission time mean. White Gaussian, 1/f, and RTS noise may be combined into a single
statement.

Name Parameter | Default value | Units |
NA Rms noise amplitude (Gaussian) - V,A
NT Time step - sec

NALPHA 1/f exponent O<a<?2 -
NAMP Amplitude (1/f) - V,A
RTSAM Amplitude - V,A

RTSCAPT Trap capture time - sec

RTSEMT Trap emission time - sec

If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may switch off
the noise contribution of an individual voltage source VNOI by the command

LOO0O OO0] $ no noise
[OO0O OO0 O 0] $no noise

alter @vnoi[trnoise]

alter @vrts[trnoise]

See Chapt. 17.5.3 for the alter command.
You may switch off all TRNOISE noise sources by setting
set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the next
run or tran command (for this specific and all following simulations). The command

unset notrnoise
will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current (isrc)
sources.

4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 89

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the ngspice
random number generator. These values may be used in the transient simulation directly within
a circuit, e.g. for generating a specific noise voltage, but especially they may be used in the
control of behavioral sources (B, E, G sources 5, voltage controllable A sources 12, capacitors
3.2.8, inductors 3.2.12, or resistors 3.2.4) to simulate the circuit dependence on statistically va-
rying device parameters. A Monte-Carlo simulation may thus be handled in a single simulation
run.

General Form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)

Examples:

VR1 r1 O dc 0 trrandom (2 10m O 1) $§ Gaussian

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian, 3 ex-
ponential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time delay with
0 V output before the random voltage values start up. PARAM1 and PARAM2 depend on the type
selected.

| TYPE | description | | PARAMI1 | default | [PARAM2 | default |
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General Form:

EXTERNAL

Examples:

Vex 1 0O dc O external
Iex il i2 dc ® external <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See Chapt. 19.6.3 for an explanation.

90 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.1.10 Arbitrary Phase Sources

The XSPICE option supports arbitrary phase independent sources that output at TIME=0.0 a
value corresponding to some specified phase shift. Other versions of SPICE use the TD (delay
time) parameter to set phase-shifted sources to their time-zero value until the delay time has
elapsed. The XSPICE phase parameter is specified in degrees and is included after the SPICE3
parameters normally used to specify an independent source. Partial XSPICE deck examples of
usage for pulse and sine waveforms are shown below:

* Phase shift is specified after Berkeley defined parameters

* on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees

vl 10 0.0 sin(® 1 1k ® 0 45.0)

rl 10 1k

v2 2 0 0.0 pulse(-1 1 0 le-5 le-5 5e-4 le-3 45.0)
r2 2 0 1k

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the four
equations

’i:gv\v:ev‘i:fi‘v:hi‘

where g, e, f, and h are constants representing transconductance, voltage gain, current gain,
and transresistance, respectively. Non-linear dependent sources for voltages or currents (B, E,
G) are described in Chapt. 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:
GXXXXXXX N+ N- NC+ NC- VALUE <m=val>
Examples:

Gl 20 50 0.1

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value is the
transconductance (in mhos). m is an optional multiplier to the output current. val may be a
numerical value or an expression according to 2.8.5 containing references to other parameters.

4.2. LINEAR DEPENDENT SOURCES 91

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:
EXXXXXXX N+ N- NC+ NC- VALUE
Examples:

El1 2 3 141 2.0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively. value is the voltage gain.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:
FXXXXXXX N+ N- VNAM VALUE <m=val>
Examples:

F1 13 5 VSENS 5 m=2
n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. vnam is the name of a voltage source through
which the controlling current flows. The direction of positive controlling current flow is from

the positive node, through the source, to the negative node of vnam. value is the current gain.
m is an optional multiplier to the output current.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:
HXXXXXXX n+ n- vnam value
Examples:

HX 5 17 VZ 0.5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage source
through which the controlling current flows. The direction of positive controlling current flow
is from the positive node, through the source, to the negative node of vnam. value is the
transresistance (in ohms).

92 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using the
XSPICE extension (25.1). The form used to specify these sources is shown in Table 4.1. For
details on its usage please see Chapt. 5.2.4.

Dependent Polynomial Sources
Source Type \ Instance Card

POLYNOMIAL VCVS | EXXXXXXX N+ N- POLY(ND) NC1+ NCI- PO (P1...)
POLYNOMIAL VCCS | GXXXXXXX N+ N- POLY(ND) NC1+ NCI1- PO (P1...)

POLYNOMIAL CCCS | FXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? PO (P1...)

POLYNOMIAL CCVS | HXXXXXXX N+ N- POLY(ND) VNAM1 |VNAM2...? PO (P1...)

Table 4.1: Dependent Polynomial Sources

Chapter 5

Non-linear Dependent Sources (Behavioral
Sources)

The non-linear dependent sources B (see Chapt. 5.1), E (see 5.2), G see (5.3) described in
this chapter allow to generate voltages or currents that result from evaluating a mathematical
expression. Internally E and G sources are converted to the more general B source. All three
sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n- <i=expr> <v=expr> <tcl=value> <tc2=value>
+ <temp=value> <dtemp=value>

Examples:
Bl ® 1 I=cos(v(1l))+sin(v(2))
B2 0 1 V=1n(Ccos(log(v(1,2)42)))-v(3)*4+v(2)rv (1)
B3 3 4 I=17
B4 3 4 V=exp(piri(vdd))
B5 2 0 V= V(1) < {Vlow} ? {Vlow}
+ V(1) > {Vhigh} ? {Vhigh} : V(1)

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is given
then the device is a current source, and if V is given the device is a voltage source. One and only
one of these parameters must be given.

A simple model is implemented for temperature behavior by the formula:

I(T) = I[(TNOM) (1 L TCy(T — TNOM) +TCo(T — TNOM)2> (5.1)

93

94 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

or

V(T) = V(TNOM) (1 L TCy(T — TNOM) +TC(T — TNOM)2> (5.2)

In the above formula, ‘7" represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present. If both
temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or sources)
with a proportionality constant equal to the derivative (or derivatives) of the source at the DC
operating point. The expressions given for V. and I may be any function of voltages and currents
through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan

Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, In, log, log10 (In, log with base e, log10 with base 10)
Other: abs, sqrt, u, u2, uramp, floor, ceil, i

Functions of two variables are: min, max, pow

Functions of three variables are: a ? b:c

The function ‘u’ is the unit step function, with a value of one for arguments greater than zero
and a value of zero for arguments less than zero. The function ‘u2’ returns a value of zero
for arguments less than zero, one for arguments greater than one and assumes the value of the
argument between these limits. The function ‘uramp’ is the integral of the unit step: for an
input x, the value is zero if x is less than zero, or if x is greater than zero the value is x. These
three functions are useful in synthesizing piece-wise non-linear functions, though convergence
may be adversely affected.

The function i (xyz) returns the current through the first node of device instance xyz.
The following standard operators are defined: +, -, *, /, A, unary -
Logical operators are !=, <>, >=, <=,==,>, <, ||, &&, !

A ternary function is defined asa ? b : ¢, which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ‘?’ to allow the parser distinguishing it from other tokens.

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 95

Example: Ternary function

* B source test Clamped voltage source

* C. P. Basso "Switched-mode power supplies", New York, 2008
.param Vhigh = 4.6

.param Vlow = 0.4

Vinl 1 ® DC 0 PWL(CO® ® 1u 5)

Bcl 2 0 V = V(1) < Vlow ? Vlow : V(1) > Vhigh ? Vhigh : V(1)
.control

unset askquit

tran 5n 1lu

plot V(2) vs V(1)

.endc

.end

If the argument of log, In, or sqrt becomes less than zero, the absolute value of the argument is
used. If a divisor becomes zero or the argument of log or In becomes zero, an error will result.
Other problems may occur when the argument for a function in a partial derivative enters a
region where that function is undefined.

Parameters may be used like { Vlow } shown in the example above. Parameters will be evaluated
upon set up of the circuit, vectors like V(1) will be evaluated during the simulation.

To get time into the expression you can integrate the current from a constant current source
with a capacitor and use the resulting voltage (don’t forget to set the initial voltage across the
capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear dependent
source. Nonlinear resistors, capacitors and inductors are implemented with their linear counter-
parts by a change of variables implemented with the nonlinear dependent source. The following
subcircuit will implement a nonlinear capacitor:

Example: Non linear capacitor

.Subckt nlcap pos neg

* Bx: calculate f(input voltage)

Bx 1 0 v = f(v(pos,neg))

* Cx: linear capacitance

Cx 2 01

* Vx: Ammeter to measure current into the capacitor
Vx 2 1 DC OVolts

* Drive the current through Cx back into the circuit
Fx pos neg Vx 1

.ends

Example for f(v(pos,neg)):

Bx 1 0 V = v(pos,neg)*v(pos,neqg)

Non-linear resistors or inductors may be described in a similar manner. An example for a
nonlinear resistor using this template is shown below.

96 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: Non linear resistor

o
<

use of ’hertz’ variable in nonlinear resistor
*.param rbase=1k
some tests

Bl 1 0 V = hertz*v(33)
B2 2 0 V = v(33)*hertz
b3 3 0 V = 6.283e3/(hertz+6.283e3)*v(33)

Vil 33 0 DC ® AC 1

Translate R1 10 ® R="1k/sqrt(HERTZ)’ to B source
.Subckt nlres pos neg rb=rbase
* Bx: calculate f(input voltage)

Bx 1 0 v = -1/ {rb} / sqrt(HERTZ) * v(pos, neg)
* RX: linear resistance
Rx 2 0 1

Example: Non linear resistor (continued)

* Vx: Ammeter to measure current into the resistor
Vx 2 1 DC OVolts

* Drive the current through Rx back into the circuit
Fx pos neg Vx 1

.ends

Xres 33 10 nlres rb=1k

*Rres 33 10 1k

Vres 10 0 DC O

.control

define check(a,b) vecmax(abs(a - b))

ac lin 10 100 1k

* some checks

print v(1) v(2) v(3)

if check(v(l), frequency) < le-12

echo "INFO: ok"

end

plot vres#branch

.endc

.end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables time and temper are available in a transient analysis, reflecting the actual
simulation time and circuit temperature. temper returns the circuit temperature, given in degree
C (see 2.11). The variable hertz is available in an AC analysis. time is zero in the AC analysis,
hertz is zero during transient analysis. Using the variable hertz may cost some CPU time if
you have a large circuit, because for each frequency the operating point has to be determined
before calculating the AC response.

5.1. BXXXX: NONLINEAR DEPENDENT SOURCE (ASRC) 97

5.1.3 par(’expression’)

The B source syntax may also be used in output lines like .plot as algebraic expressions for
output (see Chapt.15.6.6).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 0 T = pwl(v(A), 0,0, 33,10m, 100,33m, 200,50m)

v(A) is the independent variable x. Each pair of values following describes the x,y functional
relation: In this example at node A voltage of OV the current of OA is generated - next pair gives
10mA flowing from ground to node 1 at 33V on node A and so forth.

The same is possible for voltage sources:

Example: pwl_voltage

Blimit b 0 V = pwl(v(l), -4,0, -2,2, 2,4, 4,5, 6,5)

Monotony of the independent variable in the pwl definition is checked - non-monotonic x entries
will stop the program execution. v(1) may be replaced by a controlling current source. v(1) may
also be replaced by an expression, e.g. —2 i(V;;). The value pairs may also be parameters, and
have to be predefined by a .param statement. An example for the pwl function using all of
these options is shown below.

98 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example: pwl function in B source

Demonstrates usage of the pwl function in an B source (ASRC)
* Also emulates the TABLE function with limits

.param x0=-4 y0=0
.param x1=-2 yl=2
.param x2=2 y2=-2
.param x3=4 y3=1
.param xx0=x0-1
.param xx3=x3+1

0 DC=0V

* no limits outside of the tabulated x values
* (continues linearily)
Btest2 2 0 I = pwl(v(l),’x0’,’y®0’,’x1’,’y1’,’x27,’y2’,’%x37,’y3"7)

like TABLE function with limits:
Btest3 3 0 I = (v(1) < 'x0’) ? ’y0’
(v(1l) < ’x3’) 7
+ pwl(v(l),’x0’,’y®’,’x1’,’y1’,’x27,’y2",’x3",’y3’) : ’y3’

* more efficient and elegant TABLE function with limits
*(voltage controlled):
Btest4 4 0 I = pwl(v(l),

+ 'xx0’,’y0’, 'x0’,’y0’,
+ 'x17,’y1’,
+ 'x27,’y27,
+ "x37,°’y3’, 'xx37,’y3’)

o
w

more efficient and elegant TABLE function with limits
(controlled by current):

Btest5 5 0 I = pwl(-2*i(Vin),

+ 'xx07,’y0’, 'x0’,’y0’,

o
w

+ x17,’yl’,

+ 'x27,’y2"7,

+ "x37,°’y3’, 'xx3’,’y3’)
Rint2 2 0 1

Rint3 3 0 1

Rint4 4 0 1

Rint5 5 0 1

.control

dc Vin -6 6 0.2
plot v(2) v(3) v(4)-0.5 v(5)+0.5
.endc

.end

5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 99

5.2 Exxxx: non-linear voltage source

5.2.1 VOL

General form:

EXXXXXXX n+ n- vol=’expr’
Examples:

E41 4 0 vol = 'V(3)*V(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.
5.1. It may contain parameters (2.8.1) and the special variables time, temper, hertz (5.1.2).
> or { } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n- value={expr}
Examples:

E41 4 0 value = {V(3)*V(3)-0ffs}

The ’=’ sign is optional.

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4). Data
are grouped into X, y pairs. Expression may be an equation or an expression containing node
voltages or branch currents (in the form of 1(vm)) and any other terms as given for the B source
and described in Chapt. 5.1. It may contain parameters (2.8.1). ’ or { } may be used to delimit
the function. Expression delivers the x-value, which is used to generate a corresponding y-
value according to the tabulated value pairs, using linear interpolation. If the x-value is below
x0 , y0 is returned, above x2 y2 is returned (limiting function). The value pairs have to be real
numbers, parameters are not allowed.

100 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Syntax for data entry from table:

Exxx nl n2 TABLE {expression} = (x0, y0) (x1, yl1) (x2, y2)

Example (simple comparator):

ECMP 11 ® TABLE {V(10,9)} = (-5mVv, OV) (5mV, 5V)

An ’=’ sign may follow the keyword TABLE.

5.24 POLY

Polynomial sources are only available when the XSPICE option (see 32) is enabled.

General form:

EXXXX N+ N- POLY(ND) NC1+ NCl1- (NC2+ NC2-...) PO (P1l...)

Example:

ENONLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005
POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs of
controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

The <NC1+>and <NC1-> are in pairs and define a set of controlling voltages. A particular node
can appear more than once, and the output and controlling nodes need not be different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0). Four
polynomial coefficients are given. The equivalent function to generate the output is:

® + 13.6 * v(3) + 0.2 * v(4) + 0.005 * v(3) * v(3)
Generally you will set the equation according to

POLY(1) y
POLY(2) y

p® + pl1*X1 + p2*X1*X1 + p3*X1*X1*X1 + ...

p® + pl1*X1 + p2*X2 +

p3*X1*X1 + p4*X2*X1 + p5*X2*X2 +
p6*X1*X1*X1 + p7*X2*X1*X1 + p8*X2*X2*X1 +
p9*X2*X2*X2 + ...

pl*X1 + p2*X2 + p3¥X3
p4*X1*X1 + p5*X2*X1 + p6*X3*X1
p7*X2*X2 + p8*X2*X3 + p9*X3+*X3

POLY(3) vy = p®

+ + + 4+ + +

+
+
+

where X1 is the voltage difference of the first input node pair, X2 of the second pair and so on.
Keeping track of all polynomial coefficient is rather tedious for large polynomials.

5.2. EXXXX: NON-LINEAR VOLTAGE SOURCE 101

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option. There
is however a XSPICE code model equivalent called s_xfer (see Chapt. 12.2.16), which you
may invoke manually. The XSPICE option has to be enabled (32.1). AC (15.3.1) and transient
analysis (15.3.9) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {V(1)}
+ {5 * (s/100 + 1) / (s*2/42000 + s/60 + 1)}

may be replaced by:

AELOPASS 1 int_4 filterl
.model filterl s_xfer(gain=5

+ num_coeff=[{1/100} 1]
+ den_coeff=[{1/42000} {1/60} 1]
+ int_ic=[0 0])

ELOPASS 4 0 int_4 0 1

where you have the voltage of node 1 as input, an intermediate output node int_4 and an E-
source as buffer to keep the name ‘ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a B-Source
(5.1) for evaluating the expression before entering the A-device.

E-Source with complex controlling expression:
ELOPASS 4 ® LAPLACE {V(1)*v(2)} {10 / (s/6800 + 1)}
may be replaced by:

BELOPASS int_1 0 V=V(1)*v(2)
AELOPASS int_1 int_4 filterl
.model filterl s_xfer(gain=10

+ num_coeff=[1]
+ den_coeff=[{1/6800} 1]
+ int_ic=[0])

ELOPASS 4 0 int_4 0 1

102 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

5.3 Gxxxx: non-linear current source

5.3.1 CUR

General form:
GXXXXXXX n+ n- cur='expr’ <m=val>
Examples:

G51 55 225 cur = ’V(3)*V(3)-0ffs’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in Chapt.
5.1. It may contain parameters (2.8.1) and special variables (5.1.2). m is an optional multiplier
to the output current. val may be a numerical value or an expression according to 2.8.5 con-
taining only references to other parameters (no node voltages or branch currents!), because it is
evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:

GXXXXXXX n+ n- value='expr’ <m=val>
Examples:

G51 55 225 value = ’V(3)*V(3)-0ffs’

The ’=’ sign is optional.

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see Chapt.
5.2.3).

Syntax for data entry from table:

Gxxx nl n2 TABLE {expression} =
+ (x0, y0) (x1, yl1) (x2, y2) <m=val>

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {V(10,9)} = (-5MV, OV) (5MV, 5V)
R 11 0 1k

5.3. GXXXX: NON-LINEAR CURRENT SOURCE 103

m is an optional multiplier to the output current. val may be a numerical value or an expression
according to 2.8.5 containing only references to other parameters (no node voltages or branch
currents!), because it is evaluated before the simulation commences. An ’=’ sign may follow
the keyword TABLE.

5.34 POLY

see E-Source at Chapt. 5.2.4.

5.3.5 LAPLACE

See E-Source, Chapt. 5.2.5 , for an equivalent code model replacement.

5.3.6 Example

An example file is given below.

104 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Example input file:

VCCS, VCVS, non-linear dependency
.param Vi=1

.param Offs="0.01%Vi’

* VCCS depending on V(3)

B21 intl 0 V = V(3)*V(3)

Gl 21 22 intl 0 1

* measure current through VCCS
vm 22 0 dc O

R21 21 0 1

* new VCCS depending on V(3)
G51 55 225 cur = ’V(3)*V(3)-0ffs’
* measure current through VCCS
vm5 225 0 dc ©

R51 55 0 1

* VCVS depending on V(3)

B31 int2 0 V = V(3)*V(3)

El1 1 0 int2 0 1

R1 101

* new VCVS depending on V(3)
E41 4 0 vol = 'V(3)*V(3)-0ffs’
R4 4 0 1

* control voltage

Vi 3 0 PWL(CO ® 100u {Vi})
.control

unset askquit

tran 10n 100u uic

plot i(E1) i(E41)

plot i(vm) i(vm5)

.endc

.end

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up user
defined models. Unfortunately debugging these models is not very comfortable.

5.4. DEBUGGING A BEHAVIORAL SOURCE 105

Example input file with bug (log(-2)):

B source debugging

E41 4 0 vol = 'V(1)*log(V(2))’

.control
tran 1 1
.endc

.end

The input file given above results in an error message:
Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function, then
debugging is nearly impossible.

However, if the variable ngdebug (see 17.7) is set (e.g. in file .spiceinit), a more distinctive
error message is issued that (after some closer investigation) will reveal the location and value
of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

Error: -2 out of range for log
calling PTeval, tree =
(v®) * (log (v1))
d/ dve : log (vl)
d/ dvl : (v0) * ((0.434294) / (v1))
values: var® = 1
varl = -2

If variable strict_errorhandling (see 17.7) is set, ngspice exits after this message. If not,
gmin and source stepping may be started, typically without success.

106 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one introdu-
ced with KSPICE. The latter provide an improved transient analysis of lossy transmission lines.
Unlike SPICE models that use the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using the
recursive convolution method. The impulse response of an arbitrary transfer function can be
determined by deriving a recursive convolution from the Pade approximations of the function.
We use this approach for simulating each transmission line’s characteristics and each multi-
conductor line’s modal functions. This method of lossy transmission line simulation has been
proved to give a speedup of one to two orders of magnitude over SPICE3f5.

6.1 Lossless Transmission Lines
General form:

TXXXXXXX N1 N2 N3 N4 ZO=VALUE <TD=VALUE>
+ <F=FREQ <NL=NRMLEN>> <IC=V1l, I1, V2, I2>

Examples:

T1 1 0 2 0 Z0=50 TD=10ONS

nl and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the characteristic
impedance. The length of the line may be expressed in either of two forms. The transmission
delay, td, may be specified directly (as td=10ns, for example). Alternatively, a frequency £
may be given, together with nl, the normalized electrical length of the transmission line with
respect to the wavelength in the line at the frequency ‘f’. If a frequency is specified but nl is
omitted, 0.25 is assumed (that is, the frequency is assumed to be the quarter-wave frequency).
Note that although both forms for expressing the line length are indicated as optional, one of
the two must be specified.

Note that this element models only one propagating mode. If all four nodes are distinct in the ac-
tual circuit, then two modes may be excited. To simulate such a situation, two transmission-line
elements are required. (see the example in Chapt. 21.7 for further clarification.) The (optional)

107

108 CHAPTER 6. TRANSMISSION LINES

initial condition specification consists of the voltage and current at each of the transmission line
ports. Note that the initial conditions (if any) apply only if the UIC option is specified on the
. TRAN control line.

Note that a lossy transmission line (see below) with zero loss may be more accurate than the
lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:
OXXXXXXX nl n2 n3 n4d mname
Examples:

023 1 0 2 ® LOSSYMOD
OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. nl and n2
are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy transmission line
with zero loss may be more accurate than the lossless transmission line due to implementation
details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model hen-
ceforth) models a uniform constant-parameter distributed transmission line. The RC and LC
cases may also be modeled using the URC and TRA models; however, the newer LTRA model
is usually faster and more accurate than the others. The operation of the LTRA model is based
on the convolution of the transmission line’s impulse responses with its inputs (see [8]). The
LTRA model takes a number of parameters, some of which must be given and some of which
are optional.

6.2. LOSSY TRANSMISSION LINES 109

| Name \ Parameter | Units/Type | Default | Example |
R resistance/length Q/unit 0.0 0.2
L inductance/length H /ynit 0.0 9.13e-9
G conductance/length mhos /unit 0.0 0.0
C capacitance/length F Junit 0.0 3.65e-12
LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control | 5
NOSTEPLIMIT don’t limit time-step to less flag not set set
than line delay
NO CONTROL don’t do complex time-step flag not set set
control
LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic flag not set set
seems bad
COMPACTREL special reltol for history RELTOL 1.0e-3
compaction
COMPACTABS special abstol for history ABSTOL | 1.0e-9
compaction
TRUNCNR use Newton-Raphson method flag not set set
for time-step control
TRUNCDONTCUT | don’t limit time-step to keep flag not set set
impulse-response errors low

The following types of lines have been implemented so far:

RLC (uniform transmission line with series loss only),

RC (uniform RC line),

LC (lossless transmission line),

RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length LEN
of the line must be specified. NOSTEPLIMIT is a flag that will remove the default restriction
of limiting time-steps to less than the line delay in the RLC case. NO CONTROL is a flag that
prevents the default limiting of the time-step based on convolution error criteria in the RLC and
RC cases. This speeds up simulation but may in some cases reduce the accuracy of results.
LININTERP is a flag that, when specified, will use linear interpolation instead of the default
quadratic interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when spe-
cified, uses a metric for judging whether quadratic interpolation is not applicable and if so uses
linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONTCUT is a
flag that removes the default cutting of the time-step to limit errors in the actual calculation of
impulse-response related quantities. COMPACTREL and COMPACTABS are quantities that control
the compaction of the past history of values stored for convolution. Larger values of these lower
accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT
option, described in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-
Raphson iterations to determine an appropriate time-step in the time-step control routines. The

110 CHAPTER 6. TRANSMISSION LINES

default is a trial and error procedure by cutting the previous time-step in half. REL and ABS are
quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL. The
default value of 1 is usually safe from the point of view of accuracy but occasionally increases
computation time. A value greater than 2 eliminates all breakpoints and may be worth trying
depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from
the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used for
setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in
a .OPTIONS card. The legal range is between O and 1. Larger values usually decrease the
accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified
on a .OPTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of
accuracy.

6.3 Uniform Distributed RC Lines

General form:
UXXXXXXX nl n2 n3 mname l=len <n=lumps>
Examples:

Ul 1 2 0 URCMOD L=50U
URC2 1 12 2 UMODL 1=1MIL N=6

nl and n2 are the two element nodes the RC line connects, while n3 is the node the capacitances
are connected to. mname is the model name, len is the length of the RC line in meters. lumps,
if specified, is the number of lumped segments to use in modeling the RC line (see the model
description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model is
accomplished by a subcircuit type expansion of the URC line into a network of lumped RC
segments with internally generated nodes. The RC segments are in a geometric progression,
increasing toward the middle of the URC line, with K as a proportionality constant. The num-
ber of lumped segments used, if not specified for the URC line device, is determined by the
following formula:

(6.1)

6.4. KSPICE LOSSY TRANSMISSION LINES 111

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parame-
ter is given a nonzero value, in which case the capacitors are replaced with reverse biased diodes
with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a satu-
ration current of ISPERL amps per meter of transmission line and an optional series resistance

equivalent to RSPERL ohms per meter.

Name \ Parameter \ Units \ Default \ Example \ Area ‘
K Propagation Constant - 2.0 1.2
FMAX | Maximum Frequency of interest | Hz 1.0G | 6.5 Meg
RPERL Resistance per unit length Q/m 1000 10
CPERL Capacitance per unit length F/m | 10e-15 Ip
ISPERL | Saturation Current per unit length | A/m 0 -
RSPERL | Diode Resistance per unit length | 2/m 0 -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using the
recursive convolution method. The impulse response of an arbitrary transfer function can be
determined by deriving a recursive convolution from the Pade approximations of the function.
NGSPICE is using this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
shown to give a speedup of one to two orders of magnitude over SPICE3E. Please note that the
following two models will support only transient simulation, no ac.

Additional Documentation Available:

* S. Lin and E. S. Kuh, ‘Pade Approximation Applied to Transient Simulation of Lossy
Coupled Transmission Lines,” Proc. IEEE Multi-Chip Module Conference, 1992, pp.
52-55.

* S. Lin, M. Marek-Sadowska, and E. S. Kuh, ‘SWEC: A StepWise Equivalent Conduc-
tance Timing Simulator for CMOS VLSI Circuits,” European Design Automation Conf.,
February 1991, pp. 142-148.

* S. Lin and E. S. Kuh, ‘Transient Simulation of Lossy Interconnect,” Proc. Design Auto-
mation Conference, Anaheim, CA, June 1992, pp. 81-86.

6.4.1 Single Lossy Transmission Line (TXL)
General form:

YXXXXXXX N1 ® N2 O mname <LEN=LENGTH>
Example:

Y1 1 0 2 0 ymod LEN=2
.MODEL ymod txl R=12.45 L=8.972e-9 G=0 C=0.468e-12 length=16

112 CHAPTER 6. TRANSMISSION LINES

nl and n2 are the nodes of the two ports. The optional instance parameter len is the length of
the line and may be expressed in multiples of [unit]. Typically unit is given in meters. len will
override the model parameter length for the specific instance only.

The TXL model takes a number of parameters:

Name \ Parameter \ Units/Type \ Default \ Example ‘
R resistance/length Q/unit 0.0 0.2
L inductance/length H [unit 0.0 9.13e-9
G conductance/length mhos /unit 0.0 0.0
C capacitance/length F [unit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

Model parameter 1ength must be specified as a multiple of unit. Typically unit is given in [m].
For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without fre-
quency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up to 8
coupled lines are supported in NGSPICE.

General form:
PXXXXXXX NI1 NI2...NIX GND1 NO1l NO2...NOX GND2 mname <LEN=LENGTH>
Example:

P1 inl in2 0O bl b2 ® PLINE

.model PLINE CPL length={Len}

+R=1 0 1

+L={L11} {L12} {L22}

+G=0 0 0

+C={C11} {C12} {C22}

.param Len=1 Rs=0

+ C11=9.143579E-11 C12=-9.78265E-12 (C22=9.143578E-11
+ L11=3.83572E-7 L12=8.26253E-8 L22=3.83572E-7

nil ... nix are the nodes at port 1 with gndl; nol ... nox are the nodes at port 2 with gnd2.
The optional instance parameter 1len is the length of the line and may be expressed in multiples
of [unit]. Typically unit is given in meters. len will override the model parameter length for
the specific instance only.

The CPL model takes a number of parameters:

’ Name \ Parameter \ Units/Type \ Default \ Example ‘
R resistance/length Q/unit 0.0 0.2
L inductance/length H [unis 0.0 9.13e-9
G conductance/length mhos [unit 0.0 0.0
C capacitance/length F [unit 0.0 3.65e-12
LENGTH length of line unit no default 1.0

6.4. KSPICE LOSSY TRANSMISSION LINES 113

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the diagonal
elements must be specified, for L. and C matrices the lower or upper triangular elements must
specified. The parameter LENGTH is a scalar and is mandatory. For transient simulation only.

114 CHAPTER 6. TRANSMISSION LINES

Chapter 7

Diodes

7.1 Junction Diodes
General form:

DXXXXXXX n+ n- mname <area=val> <m=val> <pj=val> <off>
+ <ic=vd> <temp=val> <dtemp=val>

Examples:

DBRIDGE 2 10 DIODE1
DCLMP 3 7 DMOD AREA=3.0 IC=0.2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5. Perimeter
effects and high injection level have been introduced into the original model and temperature
dependence of some parameters has been added. n+ and n- are the positive and negative nodes,
respectively. mname is the model name. Instance parameters may follow, dedicated to only
the diode described on the respective line. area is the area scale factor, which may scale
the saturation current given by the model parameters (and others, see table below). pj is the
perimeter scale factor, scaling the sidewall saturation current and its associated capacitance. m
is a multiplier of area and perimeter, and off indicates an (optional) starting condition on the
device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional)
initial condition specification using ic is intended for use with the uic option on the .tran
control line, when a transient analysis is desired starting from other than the quiescent operating
point. You should supply the initial voltage across the diode there. The (optional) temp value
is the temperature at which this device is to operate, and overrides the temperature specification
on the .option control line. The temperature of each instance can be specified as an offset to
the circuit temperature with the dtemp option.

7.2 Diode Model (D)

The dc characteristics of the diode are determined by the parameters is and n. An ohmic
resistance, rs, is included. Charge storage effects are modeled by a transit time, tt, and a

115

116 CHAPTER 7. DIODES

nonlinear depletion layer capacitance that is determined by the parameters cjo, vj, and m. The
temperature dependence of the saturation current is defined by the parameters eg, the energy,
and xti, the saturation current temperature exponent. The nominal temperature where these
parameters were measured is tnom, which defaults to the circuit-wide value specified on the
.options control line. Reverse breakdown is modeled by an exponential increase in the reverse
diode current and is determined by the parameters bv and ibv (both of which are positive
numbers).

Junction DC parameters

’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
BV Reverse breakdown voltage Vv oo 40
IBV Current at breakdown voltage | A 1.0e-3 1.0e-4
IK (IKF) | Forward knee current A 1.0e-3 1.0e-6
IKR Reverse knee current A 1.0e-3 1.0e-6
IS (JS) Saturation current A 1.0e-14 | 1.0e-16 | area
ISW Sidewall saturation current A 1.0e-14 | 1.0e-15 | perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Q 0.0 100 1/area
Junction capacitance parameters
’ Name \ Parameter \ Units \ Default \ Example \ Scale factor ‘
CJO (CJO) Zero-bias junction bottom-wall F 0.0 2pF area
capacitance
CJP (CJSW) | Zero-bias junction sidewall F 0.0 .1pF perimeter
capacitance
FC Coefficient for forward-bias - 0.5 -
depletion bottom-wall capacitance
formula
FCS Coefficient for forward-bias - 0.5 -
depletion sidewall capacitance
formula
M (MJ) Area junction grading coefficient - 0.5 0.5
MISW Periphery junction grading - 0.33 0.5
coefficient
VI (PB) Junction potential Vv 1 0.6
PHP Periphery junction potential Vv 1 0.6
TT Transit-time sec 0 0.1ns

7.3. DIODE EQUATIONS

Temperature effects

117

| Name Parameter | Units | Default | Example
.11 Si
EG Activation energy eV 1.11 0.69 Sbd
0.67 Ge
™1 Ist order tempco for MJ 1/oc 0.0 -
T™2 2nd order tempco for MJ 1/oc? 0.0 -
TNOM (TREF) | Parameter measurement temperature °C 27 50
TRS1 (TRS) 1st order tempco for RS 1/oc 0.0 -
TRS2 2nd order tempco for RS 1/oc? 0.0 -
™1 Ist order tempco for MJ 1/°c 0.0 -
T™2 2nd order tempco for MJ 1/oc2 0.0 -
TTT1 Ist order tempco for TT 1/oc 0.0 -
TTT2 2nd order tempco for TT 1/oc? 0.0 -
. 3.0 pn

XTI Saturation current temperature exponent - 3.0 50 Shd
TLEV Diode temperature equation selector - 0
TLEVC Diode capac. temperature equation selector - 0
CTA (CTC) Area junct. cap. temperature coefficient 1/oc 0.0 -
CTP Perimeter junct. cap. temperature coefficient | 1/°c 0.0 -
TCV Breakdown voltage temperature coefficient 1/oc 0.0 -

Noise modeling

’ Name \ Parameter

\ Units \ Default \ Example \ Scale factor ‘

KF Flicker noise coefficient - 0

AF Flicker noise exponent - 1

Diode models may be described in the input file (or an file included by .inc) according to the

following example:

General form:

.model mname type(pnamel=pvall pname2=pval2

Examples:

.model DMOD D (bv=50 is=le-13 n=1.05)

7.3 Diode Equations

)

The junction diode is the basic semiconductor device and the simplest one in ngspice, but its
model is quite complex, even when not all the physical phenomena affecting a pn junction are
handled. The diode is modeled in three different regions:

118 CHAPTER 7. DIODES

» Forward bias: the anode is more positive than the cathode, the diode is ‘on’ and can
conduct large currents. To avoid convergence problems and unrealistic high current, it is
prudent to specify a series resistance to limit current with the rs model parameter.

* Reverse bias: the cathode is more positive than the anode and the diode is ‘off’. A reverse
bias diode conducts a small leakage current.

* Breakdown: the breakdown region is modeled only if the bv model parameter is given.
When a diode enters breakdown the current increases exponentially (remember to limit
it); bv is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier m as
depicted below:

AREA.;y = AREAm

Plorr =Plm

ISerr =ISAREA.rr +JSW PJ.sr
IBV,;s =IBVAREA,t¢

IK,rr =1IKAREA, ¢

IKR, sy = IKRAREA,¢f

Clerr = CIOAREA s¢

CJP,;y = CIPPJ sy

Diode DC, Transient and AC model equations

V,
IS,s¢(e¥F — 1)+ Vp-GMIN, it Vp > —3MT
Ip = —ISess[1+ (FELV]+ Vo -GMIN, if —BV,zp < Vp < —38L (7.1)
—4(BVerr+Vp)

—ISeff(e NkT)+VD -GMIN, ifVp < —BVeff

The breakdown region must be described with more depth since the breakdown is not modeled
physically. As written before, the breakdown modeling is based on two model parameters: the
‘nominal breakdown voltage’ bv and the current at the onset of breakdown ibv. For the diode
model to be consistent, the current value cannot be arbitrarily chosen, since the reverse bias and
breakdown regions must match. When the diode enters breakdown region from reverse bias,
the current is calculated using the formula':

Ipawn = —ISeff(eﬁ —1) (7.2)

The computed current is necessary to adjust the breakdown voltage making the two regions
match. The algorithm is a little bit convoluted and only a brief description is given here:

lif you look at the source code in file diotemp.c you will discover that the exponential relation is replaced
with a first order Taylor series expansion.

7.3. DIODE EQUATIONS 119

if IBV, ¢ < Ipawn then
IBV, ¢ = Ipawn

BV,rr =BV
else .
BV.ry =BV —NV; ln(ﬁ)

Algorithm 2: Diode breakdown current calculation

Most real diodes shows a current increase that, at high current levels, does not follow the expo-
nential relationship given above. This behavior is due to high level of carriers injected into the
junction. High injection effects (as they are called) are modeled with ik and ikr.

L, if Vp > _ 3 NkT
Ipess = V et _ (7.3)
D otherwise.

oy
TKR,ff
Diode capacitance is divided into two different terms:

* Depletion capacitance

* Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the bottom
of the junction (bottom-wall depletion capacitance) and the other to the periphery (sidewall
depletion capacitance). The basic equations are:

Cpiode = Cdiffusion + Cdepletion

Where the depletion capacitance is defined as:

Cdepleti()n = Cdeplbw + Cdeplsw

The diffusion capacitance, due to the injected minority carriers, is modeled with the transit time
tt:

8[Deff
aVp

Cdiffusi()n =TT

The depletion capacitance is more complex to model, since the function used to approximate it
diverges when the diode voltage become greater than the junction built-in potential. To avoid
function divergence, the capacitance function is approximated with a linear extrapolation for
applied voltage greater than a fraction of the junction built-in potential.

Clopp(1—B)™M if Vp < FC-VJ

Caepl,, = _ p (7.4)
P CJeff1 F(Cl(i;g{ﬁ;lx” VI otherwise.

120 CHAPTER 7. DIODES

CIP,pf(1 — pibs) ™MW, if Vp, < FCS - PHP
Caeply, =

1-FCS(1-+MJISW)+MISW- 725 . (7.5)
CJPesy (L _FCs)(1FM5W) PHP. otherwise.

Temperature dependence

The temperature affects many of the parameters in the equations above, and the following equa-
tions show how. One of the most significant parameters that varies with the temperature for a
semiconductor is the band-gap energy:

TNOM?2
EG,,, =1.16 —7.02¢* 7.6
nom ¢ TNOM+ 1108.0 (7.6)

T2
EG(T)=1.16—7.02¢* 7.7
G(T) ® TNOM+1108.0 7.7

The leakage current temperature’s dependence is:

logfactor

IS(T)=1Se N (7.8)
log factor
JSW(T)=JSWe N~ (7.9)
where ‘logfactor’ is defined as
EG EG
[tor = — XTI1 7.10
ogfactor = vasom Vi) T R (GRoM (7.10)
The contact potentials (bottom-wall an sidewall) temperature dependence is:
T T EGhom EG(T)
VJ(T)=V] —Vi(T) |31 — 7.11
(1) =VIiNom) ~ %)["(rNom’ V. (TNOM) ~ V() (7.11)
T EGnom EG(T)
PHP(T) =PHP —Vi(T) |31 = 7.12
(T) (vom) ¢ ﬁ "(TNom) TV, (TNOM) ~ Vi(T) (7.12)
The depletion capacitances temperature dependence is:
VJ(T
CJ(T)=CJ [1 +MI(4.0e (T — TNOM) — % + 1)] (7.13)
PHP(T
CJSW(T) =CISW [1 +MISW (4.0 4(T — TNOM) — T;) 1)] (7.14)

The transit time temperature dependence is:

TT(T) = TT(1+TTT1(T — TNOM) + TTT2(T — TNOM)?) (7.15)

7.3. DIODE EQUATIONS 121

The junction grading coefficient temperature dependence is:

MJ(T) = MI(1+TMI1(T — TNOM) + TM2(T — TNOM)?) (7.16)

The series resistance temperature dependence is:
RS(T) =RS(1 +TRS(T — TNOM) 4+ TRS2(T — TNOM)?) (7.17)

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance rs
and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

o 4KTAf

7.18
lRS RS ()
The shot and flicker noise contributions are:

= KF-I3f

i2 = 2gIpAf + D_Af (7.19)

f

122 CHAPTER 7. DIODES

Chapter 8

BJTs

8.1 Bipolar Junction Transistors (BJTs)
General form:

QXXXXXXX nc nb ne <ns> mname <area=val> <areac=val>
+ <areab=val> <m=val> <off> <ic=vbe,vce> <temp=val>
+ <dtemp=val>

Examples:

Q23 10 24 13 QMOD IC=0.6, 5.0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (optional) sub-
strate node. When unspecified, ground is used. mname is the model name, area, areab, areac
are the area factors (emitter, base and collector respectively), and off indicates an (optional)
initial condition on the device for the dc analysis. If the area factor is omitted, a value of 1.0 is
assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired to start from other
than the quiescent operating point. See the .1ic control line description for a better way to set
transient initial conditions. The (optional) temp value is the temperature where this device is
to operate, and overrides the temperature specification on the .option control line. Using the
dtemp option one can specify the instance’s temperature relative to the circuit temperature.

8.2 BJT Models (NPN/PNP)

Ngspice provides three BJT device models, which are selected by the .model card.
.model QMOD1 BIJT level=2

This is the minimal version, further optional parameters listed in the table below may replace
the ngspice default parameters. The level keyword specifies the model to be used:

123

124 CHAPTER 8. BIJTS

* level=1: This is the original SPICE BJT model, and it is the default model if the level
keyword is not specified on the .model line.

* level=2: This is a modified version of the original SPICE BJT that models both vertical
and lateral devices and includes temperature corrections of collector, emitter and base
resistors.

* level=4: Advanced VBIC model (see http://www.designers-guide.org/VBIC/ for details)

The bipolar junction transistor model in ngspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model
to include several effects at high bias levels. The model automatically simplifies to the simpler
Ebers-Moll model when certain parameters are not specified. The parameter names used in the
modified Gummel-Poon model have been chosen to be more easily understood by the user, and
to reflect better both physical and circuit design thinking.

The dc model is defined by the parameters is, bf, nf, ise, ikf, and ne, which determine
the forward current gain characteristics, is, br, nr, isc, ikr, and nc, which determine the
reverse current gain characteristics, and vaf and var, which determine the output conductance
for forward and reverse regions.

The level 1 model has among the standard temperature parameters an extension compatible with
most foundry provided process design Kits (see parameter table below tlev).

The level 1 and 2 models include the substrate saturation current iss. Three ohmic resistances
rb, rc, and re are included, where rb can be high current dependent. Base charge storage is
modeled by forward and reverse transit times, tf and tr, where the forward transit time tf can
be bias dependent if desired. Nonlinear depletion layer capacitances are defined with cje, vje,
and nje for the B-E junction, cjc, vjc, and njc for the B-C junction and cjs, vjs, and mjs
for the C-S (collector-substrate) junction.

The level 1 and 2 model support a substrate capacitance that is connected to the device’s base or
collector, to model lateral or vertical devices dependent on the parameter subs. The temperature
dependence of the saturation currents, is and iss (for the level 2 model), is determined by the
energy-gap, eg, and the saturation current temperature exponent, xti.

In the new model, additional base current temperature dependence is modeled by the beta tem-
perature exponent xtb. The values specified are assumed to have been measured at the tempera-
ture tnom, which can be specified on the . options control line or overridden by a specification
on the .model line.

The level 4 model (VBIC) has the following improvements beyond the GP models: impro-
ved Early effect modeling, quasi-saturation modeling, parasitic substrate transistor modeling,
parasitic fixed (oxide) capacitance modeling, includes an avalanche multiplication model, im-
proved temperature modeling, base current is decoupled from collector current, electrothermal
modeling, smooth and continuous mode.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

http://www.designers-guide.org/VBIC/

8.2. BJT MODELS (NPN/PNP)

125

| Name | Parameters | Units | Default | Example | Scale factor |
SUBS Substrate connection: for vertical 1
geometry, -1 for lateral geometry
(level 2 only).
IS Transport saturation current. A 1.0e-16 | 1.0e-15 area
ISS Reverse saturation current, A 1.0e-16 | 1.0e-15 area
substrate-to-collector for vertical
device or substrate-to-base for
lateral (level 2 only).
BF Ideal maximum forward beta. - 100 100
NF Forward current emission - 1.0 1
coefficient.
VAF (VA) Forward Early voltage. Vv oo 200
IKF Corner for forward beta current A oo 0.01 area
roll-off.
NKF High current Beta rolloff exponent - 0.5 0.58
ISE B-E leakage saturation current. A 0.0 le-13 area
NE B-E leakage emission coefficient. - 1.5 2
BR Ideal maximum reverse beta. - 0.1
NR Reverse current emission - 1
coefficient.
VAR (VB) Reverse Early voltage. Vv oo 200
IKR Corner for reverse beta high A) 0.01 area
current roll-off.
ISC B-C leakage saturation current A 0.0 le-13 area
(area is ‘areab’ for vertical devices
and ‘areac’ for lateral).
NC B-C leakage emission coefficient. - 2 1.5
RB Zero bias base resistance. Q 0 100 area
IRB Current where base resistance falls A o 0.1 area
halfway to its min value.
RBM Minimum base resistance at high Q RB 10 area
currents.
RE Emitter resistance. Q 0 1 area
RC Collector resistance. Q 0 10 area
CIE B-E zero-bias depletion F 0 2pF area
capacitance.
VIE (PE) B-E built-in potential. Vv 0.75 0.6
MIJE (ME) B-E junction exponential factor. - 0.33 0.33
TF Ideal forward transit time. sec 0 0.1ns
XTF Coefficient for bias dependence of - 0
TF.
VTF Voltage describing VBC Vv oo
dependence of TF.
ITF High-current parameter for effect A 0 - area
on TF.

126

CHAPTER 8. BIJTS

|
PTF Excess phase at freqzm Hz. deg 0
CIC B-C zero-bias depletion F 0 2pF area
capacitance (area is ‘areab’ for
vertical devices and ‘areac’ for
lateral).
VIC (PC) B-C built-in potential. |% 0.75 0.5
MIC B-C junction exponential factor. - 0.33 0.5
XCJC Fraction of B-C depletion - 1
capacitance connected to internal
base node.
TR Ideal reverse transit time. sec 0 10ns
CIS Zero-bias collector-substrate F 0 2pF area
capacitance (area is ‘areac’ for
vertical devices and ‘areab’ for
lateral).
VIS (PS) Substrate junction built-in |% 0.75
potential.
MIS (MS) Substrate junction exponential - 0 0.5
factor.
XTB Forward and reverse beta - 0
temperature exponent.
EG Energy gap for temperature effect ev 1.11
on IS.
XTI Temperature exponent for effect on - 3
IS.
KF Flicker-noise coefficient. - 0
AF Flicker-noise exponent. - 1
FC Coefficient for forward-bias - 0.5 0
depletion capacitance formula.
TNOM (TREF) | Parameter measurement °C 27 50
temperature.
TLEV BJT temperature equation selector - 0
TLEVC BJT capac. temperature equation - 0
selector
TREI1 Ist order temperature coefficient 1/oc 0.0 le-3
for RE.
TRE2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RE.
TRC1 Ist order temperature coefficient 1/oc 0.0 le-3
for RC.
TRC2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RC.
TRB1 Ist order temperature coefficient 1/oc 0.0 le-3
for RB.
TRB2 2nd order temperature coefficient 1/oc2 0.0 le-5
for RB.

8.2. BJT MODELS (NPN/PNP)

127

TRBM1 Ist order temperature coefficient 1/oc 0.0 le-3
for RBM
TRBM2 2nd order temperature coefficient 1/oc? 0.0 le-5
for RBM
TBF1 Ist order temperature coefficient 1/oc 0.0 le-3
for BF
TBF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for BF
TBR1 Ist order temperature coefficient 1/oc 0.0 le-3
for BR
TBR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for BR
TIKF1 Ist order temperature coefficient 1/oc 0.0 le-3
for IKF
TIKF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for IKF
TIKR1 Ist order temperature coefficient 1/oc 0.0 le-3
for IKR
TIKR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for IKR
TIRB1 I'st order temperature coefficient 1/oc 0.0 le-3
for IRB
TIRB2 2nd order temperature coefficient 1/oc2 0.0 le-5
for IRB
TNC1 I'st order temperature coefficient 1/oc 0.0 le-3
for NC
TNC2 2nd order temperature coefficient 1/oc? 0.0 le-5
for NC
TNEI1 Ist order temperature coefficient 1/°c 0.0 le-3
for NE
TNE2 2nd order temperature coefficient 1/°c2 0.0 le-5
for NE
TNF1 Ist order temperature coefficient 1/oc 0.0 le-3
for NF
TNEF2 2nd order temperature coefficient 1/°c? 0.0 le-5
for NF
TNR1 Ist order temperature coefficient 1/oc 0.0 le-3
for IKF
TNR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for IKF
TVAF1 Ist order temperature coefficient 1/oc 0.0 le-3
for VAF
TVAF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for VAF
TVARI Ist order temperature coefficient 1/oc 0.0 le-3

for VAR

128

CHAPTER 8. BIJTS

TVAR2 2nd order temperature coefficient 1/oc? 0.0 le-5
for VAR
CTC Ist order temperature coefficient 1/oc 0.0 le-3
for CJC
CTE Ist order temperature coefficient 1/oc 0.0 le-3
for CJE
CTS Ist order temperature coefficient 1/oc 0.0 le-3
for CIS
TVIC Ist order temperature coefficient 1/oc? 0.0 le-5
for VIC
TVIE Ist order temperature coefficient 1/oc 0.0 le-3
for VIE
TITF1 Ist order temperature coefficient 1/oc 0.0 le-3
for ITF
TITF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for ITF
TTF1 Ist order temperature coefficient 1/oc 0.0 le-3
for TF
TTF2 2nd order temperature coefficient 1/oc? 0.0 le-5
for TF
TTR1 I'st order temperature coefficient 1/oc 0.0 le-3
for TR
TTR2 2nd order temperature coefficient 1/oc2 0.0 le-5
for TR
TMIJEI I'st order temperature coefficient 1/oc 0.0 le-3
for MJE
TMIJE2 2nd order temperature coefficient 1/oc? 0.0 le-5
for MJE
TMIC1 Ist order temperature coefficient 1/°c 0.0 le-3
for MJC
T™IC2 2nd order temperature coefficient 1/°c2 0.0 le-5
for MJC

Chapter 9

JFETs

9.1 Junction Field-Effect Transistors (JFETSs)

General form:
JXXXXXXX nd ng ns mname <area> <off> <ic=vds,vgs> <temp=t>
Examples:

J1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model name,
area is the area factor, and off indicates an (optional) initial condition on the device for dc
analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition
specification, using ic=VDS, VGS is intended for use with the uic option on the .TRAN control
line, when a transient analysis is desired starting from other than the quiescent operating point.
See the .ic control line for a better way to set initial conditions. The (optional) temp value is
the temperature where this device is to operate, and overrides the temperature specification on
the .option control line.

9.2 JFET Models (NJF/PJF)

9.2.1 JFET level 1 model with Parker Skellern modification

The level 1 JFET model is derived from the FET model of Shichman and Hodges. The dc
characteristics are defined by the parameters VTO and BETA, which determine the variation
of drain current with gate voltage, LAMBDA, which determines the output conductance, and
IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are
included.

vgst =vgs—VTO 9.1)

129

130 CHAPTER 9. JFETS

B, = BETA (1 + LAMBDA vds) 9.2)
1-B
b = — .
Jac = pg—vro ©-3)
vds - GMIN, ifvgst <0

Iprain = { Bpvds (vds (bfacvds — B) vgst (2B+3bfac (vgst —vds))) +vds- GMIN, if vgst > vds
B, vgst* (B +vgst bfac) +vds- GMIN, if vgst < vds

9.4)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and Skellern.
For details, see [9]. If parameter B is set to 1 equation above simplifies to

vds - GMIN, if vgst <0
Iprain = § Bpvds (2vgst —vds) +vds-GMIN, if vgst > vds 9.5)
By vgst® +vds - GMIN, if vgst < vds

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions,
which vary as the —1/2 power of junction voltage and are defined by the parameters CGS, CGD,
and PB.

| Name | Parameter | Units | Default | Example | Scaling factor
VTO Threshold voltage Vrg 1% -2.0 -2.0
BETA Transconductance parameter (f3) Al | 1.0e-4 1.0e-3 area
LAMBDA Channel-length modulation 1y 0 1.0e-4
parameter (1)
RD Drain ohmic resistance Q 0 100 area
RS Source ohmic resistance Q 0 100 area
CGS Zero-bias G-S junction capacitance F 0 SpF area
Cgs
CGD Zero-bias G-D junction F 0 1pF area
capacitance Cyy
PB Gate junction potential Vv 1 0.6
IS Gate saturation current Ig A 1.0e-14 | 1.0e-14 area
B Doping tail parameter - 1 1.1
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for 1.0 2.0
nlev=3
FC Coefficient for forward-bias 0.5
depletion capacitance formula
TNOM Parameter measurement °C 27 50
temperature
TCV Threshold voltage temperature 1/oc 0.0 0.1
coefficient
BEX Mobility temperature exponent - 0.0 1.1

9.2. JFET MODELS (NJF/PJF) 131

Additional to the standard thermal and flicker noise model an alternative thermal channel noise
model is implemented and is selectable by setting NLEV parameter to 3. This follows in a
correct channel thermal noise in the linear region.

1+ o+ a?)

2
Snoise = 3 4kT - BETA -V gst GDSNOI (9.6)

with

T vgs—VTO» (97)

o] — —vds__ ifvgs—VTO > vds
B 0, else

9.2.2 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available from Macquarie Univer-
sity. Some important items are:

The description maintains strict continuity in its high-order derivatives, which is essential
for prediction of distortion and intermodulation.

* Frequency dependence of output conductance and transconductance is described as a
function of bias.

* Both drain-gate and source-gate potentials modulate the pinch-off potential, which is con-
sistent with S-parameter and pulsed-bias measurements.

* Self-heating varies with frequency.

» Extreme operating regions - subthreshold, forward gate bias, controlled resistance, and
breakdown regions - are included.

* Parameters provide independent fitting to all operating regions. It is not necessary to
compromise one region in favor of another.

* Strict drain-source symmetry is maintained. The transition during drain-source potential
reversal is smooth and continuous.

The model equations are described in this pdf document and in [19].

http://www.engineering.mq.edu.au/research/groups/cnerf/psmodel/index.htm
http://www.engineering.mq.edu.au/research/groups/cnerf/psmodel/index.htm
http://www.engineering.mq.edu.au/research/groups/cnerf/psfet.pdf

132

CHAPTER 9. JFETS

| Name Description | Units | Default |
ID Device IDText Text PF1
ACGAM Capacitance modulation - 0
BETA Linear-region transconductance scale - 1074
CGD Zero-bias gate-source capacitance F 0
CGS Zero-bias gate-drain capacitance F 0
DELTA Thermal reduction coefficient 1/w 0
FC Forward bias capacitance parameter - 0.5
HFETA | High-frequency VGS feedback parameter - 0
HFE1 HFGAM modulation by VGD 1y 0
HFE2 HFGAM modulation by VGS v 0
HFGAM | High-frequency VGD feedback parameter - 0
HFG1 HFGAM modulation by VSG v 0
HFG2 HFGAM modulation by VDG A% 0
IBD Gate-junction breakdown current A 0
IS Gate-junction saturation current A 10~
LFGAM Low-frequency feedback parameter - 0
LFGI LFGAM modulation by VSG v 0
LFG2 LFGAM modulation by VDG 1y 0
MVST Subthreshold modulation 1y 0
N Gate-junction ideality factor - 1
p Linear-region power-law exponent - 2
Q Saturated-region power-law exponent - 2
RS Source ohmic resistance Q 0
RD Drain ohmic resistance Q 0
TAUD Relaxation time for thermal reduction s 0
TAUG Relaxation time for gamma feedback s 0
VBD Gate-junction breakdown potential Vv 1
VBI Gate-junction potential Vv 1
VST Subthreshold potential \% 0
VTO Threshold voltage Vv -2.0
XC Capacitance pinch-off reduction factor - 0
XI Saturation-knee potential factor - 1000
Z Knee transition parameter - 0.5
RG Gate ohmic resistance Q 0
LG Gate inductance H 0
LS Source inductance H 0
LD Drain inductance H 0
CDSS Fixed Drain-source capacitance F 0
AFAC Gate-width scale factor - 1
NFING Number of gate fingers scale factor - 1
TNOM | Nominal Temperature (Not implemented) K 300 K
TEMP Temperature K 300 K

Chapter 10

MESFETSs

10.1 MESFETs

General form:
ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>
Examples:

Z1 7 2 3 ZM1 OFF

10.2 MESFET Models (NMF/PMF)

10.2.1 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as described in
[11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine
the variation of drain current with gate voltage, ALPHA, which determines saturation voltage,
and LAMBDA, which determines the output conductance. The formula are given by:

B(VS_VT)Z Vv ‘ 3 3

L —1+b(ngS—VT) ‘1 - ‘1 —Ag ‘ (1+LVy) for0<Vye <3 o)
B(Ves—Vr)? 3
1+bfvgszVT) (1+LVqs) forV > 2

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total gate charge
as a function of gate-drain and gate-source voltages and is defined by the parameters cgs, cgd,
and pb.

133

134

CHAPTER 10. MESFETS

| Name | Parameter | Units | Default | Example | Area |
VTO Pinch-off voltage Vv -2.0 -2.0
BETA Transconductance parameter Alv2 | 1.0e-4 1.0e-3 g
B Doping tail extending parameter 1y 0.3 0.3 *
ALPHA Saturation voltage parameter 1y 2 2 *
LAMBDA | Channel-length modulation parameter v 0 1.0e-4
RD Drain ohmic resistance Q 0 100 *
RS Source ohmic resistance Q 0 100 *
CGS Zero-bias G-S junction capacitance F 0 SpF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential Vv 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion - 0.5
capacitance formula

Device instance:

zl 2 3 0 mesmod area=1.4

Model:

.model mesmod nmf level=1 rd=46 rs=46 vt0=-1.3

+ lambda=0.03 alpha=3 beta=1.4e-3

10.2.2 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly

to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit Simula-
tion", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

10.2.3 hfetl

level 5

to be written

no documentation available

10.2.4 hfet2

level6

to be written

no documentation available

Chapter 11

MOSFETs

Ngspice supports all the original mosfet models present in SPICE3f5 and almost all the newer
ones that have been published and made open-source. Both bulk and SOI (Silicon on Insula-
tor) models are available. When compiled with the cider option, ngspice implements the four
terminals numerical model that can be used to simulate a MOSFET (please refer to numerical
modeling documentation for additional information and examples).

11.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val> <l=val> <w=val>
+ <ad=val> <as=val> <pd=val> <ps=val> <nrd=val>
+ <nrs=val> <off> <ic=vds, vgs, vbs> <temp=t>

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U W=2U
M1 2 9 3 0@ MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix ‘u’ specifies microns (le-6 m) and ‘p’ sq-microns
(le-12 m?).

The instance card for MOS devices starts with the letter ’M’. nd, ng, ns, and nb are the drain,
gate, source, and bulk (substrate) nodes, respectively. mname is the model name and m is the
multiplicity parameter, which simulates ‘m’ paralleled devices. All MOS models support the
‘m’ multiplier parameter. Instance parameters 1 and w, channel length and width respectively,
are expressed in meters. The areas of drain and source diffusions: ad and as, in squared meters
(m?).

If any of 1, w, ad, or as are not specified, default values are used. The use of defaults simplifies
input file preparation, as well as the editing required if device geometries are to be changed. pd
and ps are the perimeters of the drain and source junctions, in meters. nrd and nrs designate
the equivalent number of squares of the drain and source diffusions; these values multiply the

135

136 CHAPTER 11. MOSFETS

sheet resistance rsh specified on the .model control line for an accurate representation of the
parasitic series drain and source resistance of each transistor. pd and ps default to 0.0 while nrd
and nrs to 1.0. off indicates an (optional) initial condition on the device for dc analysis. The
(optional) initial condition specification using ic=vds,vgs,vbs is intended for use with the
uic option on the .tran control line, when a transient analysis is desired starting from other
than the quiescent operating point. See the .ic control line for a better and more convenient
way to specify transient initial conditions. The (optional) temp value is the temperature at
which this device is to operate, and overrides the temperature specification on the .option
control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETsS, not for level 4
or 5 (BSIM) devices.

BSIM3 (v3.2 and v3.3.0), BSIM4 (v4.7 and v4.8) and BSIMSOI models are also supporting the
instance parameter delvto and mulu® for local mismatch and NBTI (negative bias temperature
instability) modeling:

’ Name \ Parameter \ Units \ Default \ Example ‘
delvto (delvt0) Threshold voltage shift Vv 0.0 0.07
mulu0 Low-field mobility multiplier (UO) - 1.0 0.9

11.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most widely
used devices in the electronics world. Ngspice provides all the MOSFETSs implemented in the
original Spice3f and adds several models developed by UC Berkeley’s Device Group and other
independent groups.

Each model is invoked with a .model card. A min