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Abstract—Decompilation (i.e. reverse compilation) represents
one of the most toughest and challenging tasks in reverse
engineering. Even more difficult task is the decompilation of
malware because it typically does not follow standard application
binary interface conventions, has stripped symbols, is obfuscated,
and can contain polymorphic code. Moreover, in the recent
years, there is a rapid expansion of various smart devices,
running different types of operating systems on many types of
processors, and malware targeting these platforms. These facts,
combined with the boundedness of standard decompilation tools
to a particular platform, imply that a considerable amount of
effort is needed when decompiling malware for such a diversity
of platforms.

This is an experience paper reporting the decompilation of
a real-world malware. We give a step-by-step case study of
decompiling a MIPS worm called psyb0t by using a retargetable
decompiler that is being developed within the Lissom project.
First, we describe the decompiler in detail. Then, we present the
case study. After that, we analyse the results obtained during the
decompilation and present our personal experience. The paper
is concluded by discussing future research possibilities.

Index Terms—Reverse engineering, decompilation, retar-
getable decompiler, Lissom, malware, psyb0t, experience

I. INTRODUCTION

Decompilation (i.e. reverse compilation) represents one of

the most toughest and challenging tasks in reverse engineering.

Its difficulty stems from a loss of information during compi-

lation, existence of many different file formats, architectures,

programming languages, compilers, and last, but certainly not

least, from the fact that many problems that arise during

decompilation have been proven as unsolvable in general.

Decompilation of malware represents an even more difficult

task [1, 2], which is frequently done by security companies

to inspect the behaviour of such malicious software. The

reason of the increased difficulty is that malware typically

does not follow standard application binary interface (ABI)

conventions, has stripped symbols, is obfuscated, and can

contain polymorphic or metamorphic code [3, 4].

For the past 20 years, malware was primarily targeted at

personal computers (i.e. architectures Intel x86 and x86-64).

The techniques for malware analysis were well optimized for

this platform during this time and security companies were

able to keep pace with malware authors [3, 4]. However, the

expansion of smart devices (e.g. smartphones, tablets, routers)

is very rapid in the last years [5]. Such devices are powered

by various processors and running several types of operating

systems. Users use these platforms for manipulating sensitive

user data (e.g. passwords, credit card numbers), which comes

to the attention of malware authors. Furthermore, the variety of

these platforms is problematic for security companies because

their solutions are mostly oriented on the classical ones, and

they do not fully protect new platforms at the moment. Those

are the main reasons why the amount of malware for these

platforms increases steadily for the last years.

To help with a platform-independent malware analysis, we

have proposed the concept of a retargetable decompiler [6].

This tool is being developed within the Lissom project [7] at

Brno University of Technology, Czech Republic, and aims to

be independent of any particular file format, target architecture,

and operating system. Currently, the decompiler supports the

decompilation of MIPS, ARM, and Intel x86 executables in the

UNIX ELF and Windows PE file formats. The output language

is either C or a Python-like language.

In [6] and in our successive papers [8, 9], we have only

considered the design of the decompiler and its components,

without a detailed study of its applicability in practice. This

brings us to the topic of the present paper, which fills this

gap. Indeed, the present paper gives a step-by-step case

study of decompiling a computer worm called psyb0t [10].

This worm targets modems and routers with MIPSel [11]

processors running on the Linux-based systems and creates a

botnet operated by IRC (Internet Relay Chat) command-and-

control (C&C) servers. It received quite an attention during its

discovery in January 2009 [10, 12, 13].

This is an experience paper reporting the decompilation of

a real-world malware. Such a study is rarely attempted, and

seldom reported in the literature [14]. The reason for choosing

this particular malware is that its targets (modems and routers

with MIPS processors) are outside the mainstream. This makes

the situation difficult (if not impossible) for the “standard”

decompilers, like Hex-Rays [15], because they do not support

such targets. At the same time, as shown later in the present

paper, the developed retargetable decompiler succeeds in the

decompilation. We would also like to point out that analysis

using decompilation is much easier than the previous attempts

described in [12, 13]. Hence, the present paper shows the

abilities of the decompiler in a practical scenario.

The remainder of this paper is organized as follows. After

this introductory section, Section II describes the Lissom

project’s retargetable decompiler in detail. Then, in Section III,
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we present the case study of decompiling the psyb0t malware.

Section IV analyses the results obtained during the decompi-

lation and presents our personal experience. Finally, Section V

concludes the paper by discussing future research possibilities.

II. LISSOM PROJECT RETARGETABLE DECOMPILER

The Lissom project [7] retargetable decompiler aims to be

independent of any particular target architecture, operating

system, or file format [6]. It consists of two main parts—the

preprocessing part and the decompiler core, see Figure 1.
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Fig. 1. The concept of the retargetable decompiler.

The preprocessing part analyses the input application to

detect the used file format, compiler, and, if the file was

packed, the used packer. A detailed description of this process

is given in [8]. After that, it unpacks and converts the exam-

ined platform-dependent application into an internal Common-

Object-File-Format-based representation (COFF). The conver-

sion is done via our plugin-based converter [8]. We support

conversions from Windows PE, UNIX ELF, Apple Mach-O,

and other formats. Non-standard file formats can be supported

via a direct implementation of the appropriate plugin, or via an

automatic plugin generation based on the format description

in our object-file-format description language [8]. Afterwards,

such COFF files are processed by the decompiler core.

The decompiler core is built on top of the LLVM Compiler

System [16]. The LLVM assembly language, LLVM IR, is

used as an internal code representation of the decompiled

applications throughout the decompilation process. The core

of our decompiler consists of three basic parts—a front-end,

a middle-end, and a back-end, described next.

The unified COFF files are first processed by the front-end,

which is the only platform-specific part of the decompiler be-

cause its instruction decoder is automatically generated based

on the target architecture model in the architecture description

language (ADL). In our decompiler, we use the ISAC ADL [7],

which is also developed within the Lissom project. The ISAC

processor model consists of two essential parts. (1) In the re-

source part, processor resources, such as registers or memory,

are declared. (2) In the operation part, processor instruction

set (i.e. assembler language syntax, binary encoding, and

behaviour of each instruction) is specified. The ISAC model is

transformed by a semantics extractor [17], which transforms

the semantic description (i.e. snippets of C code) of each

instruction into a sequence of LLVM IR instructions, which

properly describe its behaviour. The extracted semantics and

binary encoding of each instruction is used for an automatic

generation of an instruction decoder. The decoder translates

the application’s machine code into sequences of LLVM IR

instructions, which characterizes its behaviour in a platform-

independent way. This intermediate program representation is

further analysed and transformed in the static-analysis phase of

the front-end. This part is responsible for eliminating statically

linked code, detecting the used ABI, recovering of functions

etc. [9]. When debugging information or symbols are present

in the input application, we may utilize them to get a more

accurate result. Although this may be useful during source

recovery or code migration, this type of information is almost

never present in case of malware, so we do not rely on it.

Afterwards, the LLVM IR program representation is opti-

mized in the middle-end by using many built-in optimizations

available in LLVM and our own passes (e.g., optimizations

of loops, constant propagation, control-flow graph simplifica-

tions).

Finally, the back-end part converts the optimized interme-

diate representation into the target high-level language (HLL).

Currently, we support two target HLLs: C and a Python-like

language. The latter is very similar to Python, except a few

differences—whenever there is no support in Python for a

specific construction, we use C-like constructs. The conversion

itself is done in a several-step way. First, the input LLVM IR

is converted into another intermediate representation: back-

end intermediate representation (BIR). During this conversion,

high-level control-flow constructs, such as loops and condi-

tional statements, are identified and reconstructed. After that,

the obtained BIR is optimized, and finally, it is emitted in the

form of the target HLL.

Apart from the target HLL, we are able to produce the call

graph of the decompiled application, control-flow graphs for

all functions, and an assembly representation of the applica-

tion.
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III. PSYB0T DECOMPILATION

In this section, we present a step-by-step case study of

malware decompilation by using the previously described

retargetable decompiler. The target of our examination is a

computer worm called psyb0t [10], which attacks network

infrastructure devices (e.g. modems and routers) running MIPS

processors with Linux-based operating systems. The following

text describes all the major decompilation phases with illus-

trations.

A. Initial Recognition Using the Third-Party Tools

The size of the examined binary file is 29,264 bytes and its

MD5 hash is 58f00c14942cae1e9f24b03d55cd295d.

This is the latest known version of this malware1. As will

be discussed later, it marks itself as “PSYB0T v2.9L”.

The previous mentioned articles about psyb0t analysis were

focused mainly on the older version 2.5L [10].

The very first step of an initial analysis is detection of the

file format and the target platform. The file starts with an

identifier “’0x7f’ELF”’. In other words, it is the ELF file

format [19] that is used on UNIX-based systems. Therefore,

we can obtain additional information by using standard Linux

tools like readelf or objdump. Relevant parts of the

former one’s output are shown in Figure 2.

ELF Header:

Magic: 7f454c46010101000000000000000000

Class: ELF32

Data: 2’s compl.,little endian

OS/ABI: UNIX - System V

Type: EXEC (Executable file)

Machine: MIPS R3000

Entry point address: 0x106828

Start of program headers: 52 (bytes into file)

Start of section headers: 0 (bytes into file)

Number of program headers: 2

Number of section headers: 0

Section header string table index: 0

Fig. 2. Information about the (packed) executable file gathered by using the
readelf utility.

As can be seen from the output, it is an executable file

for the 32-bit MIPS architecture and it uses the little-endian

encoding (this architecture is explicitly called MIPSel). Its

entry point address (i.e. address of the first instruction executed

during the application run-time) is atypical because it is

usually placed somewhere nearby 0x08000000; the section

and symbol tables are empty, which is also unusual but correct.

The information about the originally used compiler is usually

stored in the optional .comment section, but this file lacks

such a section. Moreover, the file content is also atypical

because there are no visible strings, such as symbol names,

section names, or strings for user interaction during run-time.

Based on these clues, we can guess that the file is packed

and maybe obfuscated by some packer or protector. In com-

parison with Windows, the number of Linux packers is very

limited (e.g. gzexe, Elfcrypt, UPX, and HASP). A detection

1It should be noted that psyb0t has successors, like the Chuck Norris
botnet [18].

of the used packer is difficult because the existing packer

detectors (e.g. PEiD, ProtectionID, Exeinfo PE) do not support

the ELF format and its packers, see [8] for details. In the

classical approach, presented in [10, 12, 13], it is necessary to

distinguish the used packer manually, unpack it, and analyse

it by using a MIPS disassembler. Luckily, our retargetable

decompiler can handle such situation automatically. A detailed

description of the decompilation process follows.

B. Preprocessing Phase

The analyses done in the previous subsection are usually

used when inspecting malware manually. We do not need any

of the above-mentioned third-party software to perform such

analyses. Indeed, our decompiler performs them automatically

by itself so no manual intervention is needed. In a greater

detail, the first part of the decompilation process begins at

our file-information-gathering application called fileinfo.

It obtains the same information as the readelf utility does

in Figure 2 but independently on the used target format

(i.e. it supports ELF, Windows PE and other common formats).

Another its advantage is a built-in packer/compiler detector.

The detection algorithm is based on pattern matching of the

entry-point instructions with an internal signature database.

The sequence of the entry-point instructions for the psyb0t

malware starts at file offset 0x6828 and contains sequence

“e00011040000f7272028a4000000e6ac00800d3c”;

its translation to the MIPS machine code is illustrated in

Figure 3.

Address Hex dump MIPS instruction

------------------------------------------

0x00006828 041100e0 bal 0x00006bac

0x0000682c 27f70000 addiu s7,ra,0

0x00006830 00a42820 add a1,a1,a0

0x00006834 ace60000 sw a2,0(a3)

0x00006838 3c0d8000 lui t5,0x8000

Fig. 3. Entry-point instructions of the UPX packed code (little-endian
encoding).

This sequence is matched with the internal signature for

the MIPSel/ELF UPX packer [20] of the shortened little-

endian form “---11040000f7272028a4000000e6ac”.

Symbol ’-’ denotes a variable part—in this case an immediate

value of the conditional branch instruction bal.

Therefore, we figured out that the UPX packer for the

MIPS architecture was used for application packing. The used

version of UPX was 3.03 and this was the up-to-date version

when the malware started spreading. In normal circumstances,

we are able to unpack such a file by using our internal plugin-

based unpacker, see [8] for details. The UPX unpacking plugin

is trivial—it simply invokes the UPX packer with argument

-d. This argument switches UPX’s behaviour to unpacking

mode. However, this input file was manually modified to

disable this form of unpacking.

The psyb0t’s author wiped out (i.e. replaced by zero bytes)

the four parts used by UPX to detect packed binaries. The first

(file offset 0x0078), second (0x6803, near the entry point),

and fourth (0x722c) part consists of the string “UPX!” and
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are mandatory for detection by UPX. The third part laying at

file offset (0x6848) is not necessary for the detection and it

originally contained the following string:

$Info: This file is packed with the UPX executable

packer http://upx.sf.net $ $Id: UPX 3.03 Copyright

(C) 1996-2008 the UPX Team. All Rights Reserved. $

The unpacking of such a file can be done in two ways.

(1) Execute the application in a MIPS emulator and break

execution after the UPX decompression routine is done and

the original entry point is hit. Afterwards, dump the memory

content to disk and reconstruct the ELF file by using this mem-

ory dump. Every step of this process can be done automatically

without a user interaction. Retargetability can be preserved via

the concept of a retargetable simulation, presented in [21].

(2) Manually patch the three missing “UPX!” strings and use

UPX for unpacking.

The first method is marked as our future research but

unavailable yet. Therefore, we have to manually modify the

file by using the second method. This is the only manual

interaction needed during the complete decompilation process

of this file. The modified file can be easily unpacked via the

upx -d command. The unpacked file size is 127,892 bytes

that gives us a 22.88% compression ratio. The unpacked file

contains 20 sections, 133 symbols, and several hundred strings.

The last part of the preprocessing phase is a conversion of

the unpacked ELF file into an internal COFF based format.

This is done by using our another plugin-based application as

illustrated in Figure 1.

C. Front-End Phase

Next, the unpacked psyb0t application in the COFF format

is processed in the front-end phase. At first, as was mentioned

in Section II, the instruction decoder has to be automatically

generated based on the MIPS architecture model in the ISAC

language. The model is relatively simple—about 4000 lines

in this ADL. After that, the instruction decoder translates

the MIPS machine-code instructions stored in COFF into

LLVM IR platform-independent representation that is further

processed by the following analyses.

In the front-end phase, various analyses are applied, but in

what follows, we focus only on those related to our subject.

This means that we exclude, for example, a description of

analysis that reads DWARF debugging information from the

executable because psyb0t does not contain any DWARF data.

Firstly, we process the whole executable to reveal data as

strings. This is important for later usage of these strings in

function calls. It is implemented by analysing data sections.

The analysis tries to find a sequence of printable characters

terminated by the zero byte. Such a sequence is marked as a

string and its address is stored. If we detect an access to this

address, we know that it uses a specific string and we have

the value of that string.

The executable contains also symbols for functions. As we

will see later, it does not have the symbols for all functions, but

we can use the available symbols to improve the decompilation

results. This analysis is simple and just stores the pairs with the

address and name of each symbol, see Table I for illustration.

Since there is a symbol for the main function, we can skip the

entry point analysis. If the executable was without that symbol

(i.e. stripped), this analysis would try to find the address of

main by using its internal compiler-specific database or by

using a heuristic detection.

TABLE I
SHORTENED LIST OF FUNCTIONS EXTRACTED FROM SYMBOLS.

Function address Function name

0x404c20 main

0x402da0 cgen

0x40450c ddos

0x406f44 IrcPrivmsg

0x40eb14 rsgen

0x4156ac rscan

0x4162cc backup

0x41646c spoof

0x416b98 kill_all

The studied executable is for the MIPS architecture, which

utilizes so-called delay slots. A delay slot is an instruction

slot that is executed together with the previous instruction. On

MIPS, a delay slot is located immediately after every branch

instruction. The architecture description in the ISAC language

supports setting the latency of instructions. If this latency is

equal to 2, the instruction is followed by a single delay slot.

The analysis ensures that it checks the latency of the current

instruction, and if it is the instruction followed by the delay

slot, it will take the following instruction and incorporate its

semantics into the current instruction. Finally, it inserts a nop

(i.e. instruction that does nothing) instruction instead of an

instruction that was in the delay slot. After this analysis, we

can work with code without taking delay slots into account.

The next analysis is aimed on creating a control-flow graph

(CFG). It examines all branch instructions, tries to get the

target addresses and resolve the type of branches. The goal is

to recognize conditional and unconditional branches, function

calls, and returns from a function. A challenge hidden in this

executable file is the usage of position independent code (PIC).

This means that functions are called by indirect branches.

On the MIPS platform, the indirect branch is of the form

jalr t9. Therefore, if we want to know the called function,

we have to track the value that is stored in register t9. This

is ensured by our internal static-code interpreter, which uses

a partially created CFG. It goes backwards in the CFG and

searches for a store of a value in the tracked register, see [9]

for details. We illustrate how the interpreter works on the piece

of psyb0t code listed in Figure 4.

On address 0x4105c8, there is a call of a function whose

address is stored in register t9. Therefore, we call the inter-

preter to track this register and find its value. The interpreter

goes backwards in the CFG and identifies the write of a value

into t9 on address 0x4105c0. The written value is read

from memory on offset -32268 from value of the gp register.

Next, the interpreter has to get the value of gp. This register is

written on the beginning of the function. Therefore, it is not a

problem to find it by traversing the CFG. The value is given by
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Address MIPS instruction

-------------------------------------

0x410534: lui gp, 0xfc0

0x410538: addiu gp, gp, -30884

0x41053c: addu gp, gp, t9

...

0x4105c0: lw t9, -32268(gp)

0x4105c4: nop

0x4105c8: jalr t9

Fig. 4. Example of static code interpretation.

the following expression: 0x0fc0 « 16 - 30884 + t9.

The current function is called by register t9, so the interpreter

uses the address of the current function in this expression. It

has the value of gp. It subtracts 32268 from this value and

the result is address of memory, where the final value is stored.

After control-flow analysis, we can detect functions. As

we mentioned before, the executable under decompilation has

symbols, but this analysis is run nevertheless because the set of

symbols can be incomplete. This is also that case. The number

of available function symbols is 34, but the overall number of

detected functions is 91. This can be caused by linked code

from libraries without symbols or by special compiler routines.

The detection of functions is realized by our algorithms that

were presented in [9].

Psyb0t often uses the snprintf function, which is used

to build commands for an IRC server. This function has a

variable number of arguments and it would be very eligible

for us to know the accurate number of arguments and their

types. This is solved by a variadic-function analysis. It takes

a look on a call of such a function, and if we can get the

formatting string, which is the only fixed argument, we can

continue. The following arguments depend on that string and

by processing the string, we find out the missing arguments.

For example, given string "%s %s :%s", we know that there

are three more char* arguments.

At the end, we generate LLVM IR code, which is processed

by the middle-end, described next.

D. Middle-End Phase

In this stage, we have a very low-level LLVM IR of the input

binary. Each basic block represents a single assembly instruc-

tion, and there may be many redundant instructions (recall that

each assembly instruction is decompiled in isolation). The key

role of the middle-end part of our decompiler is to optimize

the input LLVM IR code and prepare it for the back-end.

For example, consider the block in Figure 5, which was

generated by the front-end for the instruction jalr t9 on

address 0x41a088.

As described in Section III-C, jalr is an indirect branch

to an address stored in a register, and a store of the return

address in another register. By using our interpreter and the

import table from the executable file, we were able to detect

that the branch is actually a call to the function usleep from

<unistd.h>. However, due to generality, a lot of boilerplate

code has to be emitted along with the call, which is optimized

in the middle-end. The block from Figure 5 after optimizations

can be seen in Figure 6.

%u0_41a088 = add i32 4300940, 0

%_c_41a088 = add i32 4, 0

%u1_41a088 = add i32 %u0_41a088, %_c_41a088

%_e_41a088 = add i32 31, 0

%u2_41a088 = load i32* @gpregs25

%u0_ds_41a088 = add i16 119, 0

%u1_ds_41a088 = sext i16 %u0_ds_41a088 to i32

store i32 %u1_ds_41a088, i32* @gpregs24

%arg1049_41a088 = load i32* @gpregs4

%r_41a088 = call i32 @usleep(i32 %arg1049_41a088)

store i32 %r_41a088, i32* @gpregs2

Fig. 5. A block generated by the front-end for the instruction jalr t9 on
address 0x41a088.

%res0_41a088 = tail call i32 @usleep(i32 %arg1)

store i32 %res0_41a088, i32* @gpregs2, align 4

Fig. 6. The block from Figure 5 after optimizations.

The arg1 variable is actually the name of the parameter

of the function, in which this call to usleep appears. It

should be noted that the optimizer in the middle-end takes

into account also the surrounding blocks so it performs the

optimization globally, not just locally over a single block.

E. Back-End Phase

The back-end part takes as input optimized LLVM IR, and

produces code in the specified target language (C or a Python-

like language). More specifically, the following actions are

performed:

1) The input LLVM IR is converted into BIR, which is

the internal representation used throughout the back-

end. During this conversion, high-level constructs, such

as conditional statements or loops, are identified and

reconstructed.

2) The obtained BIR is optimized by various optimizations,

like conversion of global variables to local variables

(when possible), constant and copy propagation, con-

version of while loops to for loops, simplification

of arithmetic expressions, restructuring of compound

statements, etc.

3) Variables are given more readable names. When debug-

ging information is available, we use the names from

there. Otherwise, we try to rename the variables to have

as readable names as possible. For example, instead of

var1, var2, . . . , we name variables by fruit names.

4) If requested, the call graph or control-flow graphs are

constructed and emitted.

5) The target code in the specified language is emitted by

converting BIR into a text representation in the requested

language.

As a special feature, not present in other decompilers, we

are able to reconstruct some symbolic names of constants

passed to various functions from the standard libraries, such

as socket. Even though the mapping of constants into their

symbolic names is often implementation-defined, by using the

information provided by the preprocessing phase, we were able

to detect the version of the linked standard library. Therefore,

we know the implementation-defined mapping of constants to
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their symbolic names, and we are able to utilize it to improve

the readability of the generated code.

For example, consider the following call to socket, done

by psyb0t:

var12 = socket(2, 3, 255);

The first parameter specifies the address family to be used

with the socket. In the statically linked library, 2 corresponds

to PF_INET, which is the IP protocol family. The second

parameter specifies desired type of communication. For 3,

this is SOCK_RAW, which indicates that the communication

is directly to the network protocols. The last parameter is the

particular protocol to be used with the socket, which, in our

case, maps to IPPROTO_RAW (raw IP packets). Hence, we

just generate

var12 = socket(PF_INET, SOCK_RAW, IPPROTO_RAW);

Moreover, we utilize the information that we are calling a

function from the standard library by assigning a more mean-

ingful name to the variable storing the result. Since socket

returns socket file descriptor (upon successful completion), a

more appropriate name is sock_id. Therefore, in the very

end, we generate the following piece of code:

sock_id = socket(PF_INET, SOCK_RAW, IPPROTO_RAW);

IV. ANALYSIS OF THE OBTAINED RESULTS

Psyb0t is an IRC bot, which reads the topic of the IRC

channel after connecting to the server and gets commands

from this topic. It scans devices in the network and tries

to log in by default usernames and passwords or uses an

exploit when the login fails. Once a shell of the vulnerable

device is acquired, psyb0t downloads itself from a remote

server by using the wget application into the victim’s location

/var/tmp/udhcpc.env. This new instance of psyb0t is

executed afterwards. It supports classical malware actions

like DDoS attacks, brute-force attacks on router passwords,

download of files, visitation of web pages, or executing shell

commands [13].

There are two known versions of psyb0t. We have decom-

piled the newer one, which identifies itself as [PRIVATE]

PSYB0T v2.9L. This version is better secured against un-

packing by UPX and it affects more network devices, mainly

models by Linksys, Netgear, and other routers running DD-

WRT or OpenWrt firmware. The application is written in the C

language. This can be spotted by the names of called functions

and also by the usage of position independent code, which can

be simply turned on by flag fPIC of the GNU gcc compiler.

In this section, we introduce a brief description of psyb0t’s

behaviour by using snippets of code from the decompiler in

order to show how the decompiler is useful for faster analysis

of malware.

In the previous section, we have presented the whole decom-

pilation process in a step-by-step way, and we have shown

the code from our own decompiler. Now, we can analyse

the obtained HLL source code. We describe the behaviour of

psyb0t immediately after its execution, i.e. the code starting

at the entry-point—the main function.

Firstly, we can take a look on the call graph. It is good

for a fast detection of relations between functions. A part of

that graph is shown in Figure 8. A complete call graph is

omitted due to space constraints. The most important parts

of the main function are listed in Figure 7. The comments

were added manually. Selected parts are listed separately with

describing notes.

int main(int argc, char **argv) {

//...

uint32_t *file = fopen("/var/tmp/udhcpd.mtx","w");

//...

uint32_t fd = fileno((uint32_t *)file);

//...

uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);

//...

RSeed();

//...

Daemonize();

//...

system("/etc/firewall_start");

system("iptables -A INPUT -p tcp --dport 23 -j

DROP");

system("rm -f /var/tmp/udhcpc.env");

//...

backup(); // Backup file /var/tmp/hosts

//...

function_404b1c(); // Prepare IRC nickname

//...

function_4056cc(); // Await for commands

//...

fclose(fd); // Remove mutex file and quit

//...

}

Fig. 7. Simplified code of the main function by using the Lissom project
retargetable decompiler.

The first operation in main is opening of a file named

udhcpd.mtx in a temporary folder. It is opened in the

writing mode. The author of psyb0t followed good practice

and checked the result of the operation.

uint32_t *file = fopen("/var/tmp/udhcpd.mtx", "w");

var3 = (uint32_t)file;

if (file == NULL) {

return 1;

}

Subsequently, there is the obtained file descriptor, which

is checked for validity. If it is valid, the application tries to

lock the file. After this operation, we can better understand

the suffix .mtx in the name of the file, because it serves as

a mutex. The lock is exclusive and it is does not block when

the locking is done. The mutex is acquired only if there is no

other running instance of psyb0t. Otherwise, the application is

terminated.

uint32_t fd = fileno(file);

if (fd == -1) {

var3 = 1;

return 1;

}

var9 = 6;

uint32_t err_code = flock(fd, LOCK_EX | LOCK_NB);

In all the three previous calls of linked functions, the back-

end applies renaming of variables storing the returned values.

For fopen, it uses the common name file. For fileno,
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system

sleep

flock

forkfread gettimeofdayfopen srandfclosestrcmp exit

filenofunction_404810

xDec

function_404b1c

main

backup Daemonize RSeed getipip2c

fetch

snprintf strncmp strncpy strlenparse

Fig. 8. A part of the call graph for main. Nodes in black are user-defined functions while grey nodes denote external functions.

it uses fd as a file descriptor, and finally, for flock, it uses

err_code. We can take a closer look on the call of flock.

The original second argument is 6, but the back-end is able

to find out the names of the symbolic constants that form this

value.

If the lock is acquired, the application calls internal function

RSeed, which initializes the pseudo-random generator of

numbers by calling srand. An important call is that of

function Daemonize, where the application is forked and the

parent process is terminated. The child process continues in its

execution on background with starting and setting a firewall,

and removing itself from the file system. The second call

of system updates firewall rules to drop all the packets on

tcp port 23 (i.e. disable inbound telnet communication). The

third command removes the file that psyb0t uses for spreading,

probably to cover its tracks. After removal, psyb0t is located

only in memory and a reset of the infected device will disinfect

it. The executed shell commands are of the following form:

/etc/firewall_start

iptables -A INPUT -p tcp --dport 23 -j DROP

rm -f /var/tmp/udhcpc.env

Afterwards, the memory-located psyb0t backups the file

/var/tmp/hosts inside the backup function and re-

ports itself to the C&C IRC channel naming itself as

a regular expression \[NIP\]-[A-Z0-9]{9} (inside

function_404b1c). The last nine symbols are gen-

erated randomly as an index to string "0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ" using the previously

initialised pseudo-random generator.

In Section III-C, we have described the data section analysis.

It provides us an array with strings that are the names of

commands which are accepted by psyb0t. These commands

are received from the topic of the connected IRC channel.

const char *STRINGS[] = {

"mode", "login", "logout", "_exit_", "sh",

"tlist", "kill", "killall", "silent", "getip",

"visit", "scan", "rscan", "sleep", "sel", "esel",

"rejoin", "upgrade", "wupgrade", "ver", "wget",

"lscan", "rlscan", "getinfo", "rsgen", "vsel",

"split", "gsel", "sflood", "uflood", "iflood",

"pscan", "fscan", "r00t", "sql", "pma", "socks",

"rsloop", "report", "uptime", "usel", "spoof",

"viri", "smb", "cgen"

};

Some of these strings are the same as names of the re-

constructed functions and we can presume that such functions

implement these commands.

One of the commands is fetch and we have a function

with the same name. If we take a look at it, we can see the

following code:

snprintf((uint8_t *)&var_9, 5120,

"GET /servlet/view/banner/javascript/zone?zid=81&

pid=0&random=%d&millis=%lu HTTP/1.1\r\nHost: %s\r

\n%s%sReferer: %s\r\n\r\n",

var_18, var_20, (uint8_t *)&var_12, (uint8_t *)

&var_13, (uint8_t *)&var_16, (uint8_t *)&var_17);

len = strlen((uint8_t *)&var_9);

dpage(-23184, (uint16_t)var_9, 0, 1);

There is a preparation of an HTTP command that is used in

internal function dpage that uses standard functions socket,

connect, send, and recv for network communication.

Psyb0t uses a timeout by registering a function for handling

SIGALRM. Before connect, there is a call alarm(3) to

wait at most three seconds for connection, and before recv,

there is alarm(12).

During its run-time, psyb0t loops in function_4056cc

awaiting for other commands obtained either from IRC chan-

nel topic or through a private massage. Commands scan,

rscan, lscan, rlscan, pscan, and fscan tell psyb0t

to scan for other vulnerable devices and try to spread itself to

them (as described in the beginning of this section).

Finally, in Table II, we provide some statistics about the

output from the decompiler. The result in the Python-like

language is shorter because it does not use types. The size

of both files is quite large, which is caused by the generation

of many assignments, where some of them are not needed. In

the future, we plan to improve our optimization algorithms in

the back-end part to remove more such code and produce even

more readable output (see the notes in Section V).

TABLE II
STATISTICS ABOUT DECOMPILER OUTPUT FOR PSYB0T.

Feature Value

Internal functions count 91
External functions count 57
Function calls 1278
C output size 553 kB
Python-like output size 453 kB
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V. CONCLUSION

In this paper, we have given a step-by-step case study of

decompiling the psyb0t worm, targeting modems and routers

with MIPS processors, by using the Lissom project’s retar-

getable decompiler. From Section IV, we see that by using our

decompiler, we are able to speedup the analysis of malware

because we deal with high-level code (cf. [12, 13], where only

the output from a disassembler is used, which requires many

additional analyses to be done).

As outlined in Section II, the front-end part of the decom-

piler is automatically generated based on a processor model

in the ISAC language. Moreover, our plugin-based converter

supports an easy addition of new file formats. Therefore, the

decompiler is not bound to a particular platform. To add

support for a new platform, we do not have to create an entirely

new decompiler. Rather, we just describe the new platform

in ISAC, add custom passes and analyses into the front-end,

and reuse the existing parts of the decompiler. This greatly

simplifies the addition of new platforms, which becomes really

handy in terms of the rapid expansion of various smart devices.

In terms of the present paper’s topic, we suggest the

following three areas for future research. First, we are de-

signing a retargetable unpacker that emulates the input packed

executable file and dumps the memory content to disk after

the original entry point was hit. The emulator will be based an

existing retargetable simulator [21]. The basic idea was already

presented in [8]. Second, by improving our copy propagation

optimization, we would get rid of more assignments, which

are present in the current code (see the code snippets in Sec-

tion IV). This would cut down the size of the generated output

and improve the readability even more. Third, it would be

interesting to compare the difficulties of decompiling malware

for other architectures, like ARM and Intel x86. Such a topic

is out of scope of the present paper.
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